Замыкание ключа в RL- цепях
Замыкание ключа в RL-цепях
В каждой схеме при попытке изменения ее энергетического состояния происходит хотя бы кратковременный переходной процесс. В качестве примера на рис. 6.1 показана схема с источником напряжения в 1 В, ключом (в начальный момент он закрыт), резистором R и катушкой индуктивности L. Посмотрим, что же произойдет сразу после замыкания ключа. Из курса теоретической электротехники известно, что ток достигнет установившегося значения V|R не сразу, нарастая по экспоненте. Постоянная времени нарастания ?=L|R представляет собой время, требуемое для достижения током 63,2% установившегося значения. Через 5?! ток почти достигнет установившегося значения, отличаясь от него не более чем на 1%.
Рис. 6.1. Замыкание ключа в RL-цепи
В PSpice, мы исследуем этот переходной процесс, воспользовавшись источником с кусочно-линейным выходным напряжением PWL (piecewise linear).
Он будет задан командой, описывающей приложенное напряжение, следующим образом:
V 1 0 PWL (0,0 10us,1V 10ms, 1V)
Команда показывает, что напряжение приложено между узлами 1 и 0 и его форма задана отрезками прямых (PWL). Параметры в круглых скобках представляют собой пару значений: момент времени — напряжение. В данном примере в момент t=0 V=0; затем при t=10 мкс V=1 В; при 10 мс V=1 В. Изменение напряжения между двумя соседними моментами времени осуществляется по отрезку прямой. Посмотрите, как выглядит временная функция напряжения. Теперь можно записать входной файл:
Switch Closing in RL Circuit
V 1 0 PWL (0,01us,1V 10ms, 1V)
R 1 2 100
L 2 0 0.1H
.TRAN 1ms 10ms
.PROBE
.END
Первое значение, показанное в команде .TRAN, является значением шага в распечатке. Выберите его равным приблизительно одной десятой части второго значения, которое указывает длительность анализируемого процесса.
Выполните анализ и получите график I(R). Обратите внимание, что ток, как и ожидалось, нарастает по экспоненте, достигая установившегося значения в 10 мА. Используйте режим курсора, чтобы определить начальную скорость изменения тока ?i|?t. Для определения отношения приращений вы можете выбрать временной интервал приблизительно в 50 мкс. Убедитесь, что в начале процесса ?i|?t=10 А/с. Если ток будет увеличиваться с этой скоростью вплоть до установившегося значения 10 мА, то когда он этого значения достигнет?
Как вы знаете, через время, равное постоянной времени ?, ток должен достигнуть 0,632 от установившегося значения. Проверьте по графику, что это значение (6,32 мА) достигается через t=1 мс. Сверьте полученный вами график с рис. 6.2.
Рис. 6.2. График тока для схемы на рис. 6.1
Если вы впервые сталкиваетесь с понятием постоянной времени, получите график при других параметрах, что поможет вам лучше разобраться с этой концепцией. Удалите график тока и получите графики трех напряжений: V(1), (V)2 и V(1,2). Напряжение V(1,2) является более коротким обозначением разности V(1)–V(2). Установив начальную задержку по оси времени в 10 мс вместо 1 мс, мы лучше увидим начальный участок процесса после замыкания ключа. Что представляют собой кривые?
Приложенное напряжение V(1) мгновенно повышается от нуля до 1 В, а напряжение на катушке индуктивности V(2) начинается при значении в 1 В в момент t=0. Можете ли вы с помощью второго закона Кирхгофа (устанавливающего связь напряжений) объяснить почему? Падение напряжения на резисторе V(1, 2) имеет, очевидно, график, подобный графику тока, поскольку vR=Ri. Так как всегда vR+vL=V (V — приложенное напряжение), то графики vR(t) и vL(t) являются зеркальными отображениями. Графики этих зависимостей показаны на рис. 6.3.
Рис. 6.3. Графики напряжений на элементах схемы на рис. 6.1
Данный текст является ознакомительным фрагментом.