Резонанс в последовательных RLC- цепях

Резонанс в последовательных RLC-цепях

Последовательный резонанс достигается в RLC-цепи, когда ее комплексное сопротивление становится чисто резистивным. При этом индуктивное и емкостное сопротивление взаимно компенсируются, ток становится максимальным, а фазовый угол — нулевым (то есть ток и приложенное напряжение находятся в фазе). Резонансная частота легко находится из уравнения:

На рис. 2.10 приведена такая схема. Значения элементов: R=50 Ом; L=20 мГн и С=150 нФ. При этих параметрах резонансная частота f0=2905,81 Гц. Приложенное напряжение выбрано равным 1?0° В. Можно работать со следующим входным файлом:

Series Resonance with RLC

V 1 0 AC 1V

R 1 2 50 L

2 3 20mH C

3 0 150nF

.AC LIN 4901 100Hz 5kHz

.PROBE

.END

Рис. 2.10. Последовательная резонансная RLC-цепь

Команда .АС предусматривает линейную вариацию частоты от 100 Гц до 5 кГц, содержащую 4901 шаг, один шаг для каждого целочисленного значения частоты в этом диапазоне.

После выполнения PSpice анализа в программе Probe будут построены графики для частот от 100 Гц до 10 кГц. Могут быть получены различные графики для сложных функций параметров схемы. Сделайте следующее:

1. Постройте график зависимости IP(R) для линейного частотного диапазона от 2 до 4 кГц (эта зависимость называется фазочастотной характеристикой — ФЧХ). Для этого выберите Trace, Add Trace…, введите с клавиатуры необходимую переменную IP(R) в поле Trace Expression и нажмите OK. Чтобы получить желательный диапазон по оси X выберите Plot, Axis Settings… и в поле X-axis выберите User Defined с диапазоном от 2 до 4 кГц. Затем выберите Scale Linear и OK. Если при выводе кривой вы получаете ошибку, выберите Trace, Delete All Traces и повторите процесс, чтобы получить необходимую кривую. Ваш график должен пройти через ноль при частоте, близкой к 2,9 кГц. Проверьте это, выбирая режим курсора (он имеет символ, который напоминает пересекающиеся пунктиры и символ проверки), затем, используя мышь или стрелки ? ? на клавиатуре, найдите положение «нулевого сдвига фаз», которое должно соответствовать частоте f=2,0058 кГц (см. рис. 2.11);

Рис. 2.11. Фазочастотная характеристика резонансного RLC-контура

2. Получите в программе PROBE график V(1)/I(R) для того же частотного диапазона от 2 до 4 кГц. Для этого сначала выберите Trace, Delete All Traces и затем — Trace, Add Trace, как вы делали прежде. Диапазон по оси Y должен быть от 0 до 300. Используйте Trace, Cursor, Display mode, чтобы найти следующие значения: при f=2 кГц, Z=283,6 Ом; при f=2,9 кГц, Z=50 Ом; и при f=4 кГц, Z=242,6 Ом;

3. Удалите эту кривую, и получите на экране сразу два графика: напряжения V(3) и тока I(R). Используйте операции Plot, Add Plot to Window, чтобы получить вторую кривую. Измените частотный диапазон в пределах от 0 до 5 кГц. В результате максимум для V(3) должен составлять приблизительно 7,3 В, а для I(R) –20 мА. Проверьте эти значения с помощью ручного расчета и сравните с рис. 2.12.

Рис. 2.12. Амплитудно-частотные характеристики тока и напряжения на конденсаторе для RLC-контура

Данный текст является ознакомительным фрагментом.