Математические формулы

Математические формулы

Кирпичи просто создавать, использовать, они понятны и просты, но на протяжении столетий возникло и сформировалось более тонкое понимание систем упорядочения. Эти открытия и нововведения развивали наше понимание сеток. Обращаясь к математике, природе и даже к собственному телу, мы веками пытались выявить скрытую в мире логику и порядок.

В VI веке до н. э. греческий философ Пифагор сформулировал теорему, ныне известную как теорема Пифагора, – математическую модель, описывающую три стороны треугольника. Эта теорема стала концептуальной основой геометрии, которую изучают студенты-математики, даже не осознавая, почему это необходимо. Теорема Пифагора наглядно показывает, что взаимоотношения между простыми числами предполагают внутренний порядок. Так что на самом деле Пифагор поднял значение математики, превратив ее в философскую основу постижения мира.

Пифагор считается одним из первых математиков, определивших золотое отношение (1:1,618), описывающее гармоничную взаимосвязь двух чисел. Это отношение часто называют золотым сечением, а его особенности долгое время занимали умы величайших математиков. Золотое сечение служило источником вдохновения для художников и архитекторов с древних времен. Эстетический эффект, который возникал при взгляде на сооружения или картины, в основе которых лежал принцип золотого сечения, производил неизгладимое впечатление. Неслучайно мы замечаем, что этот принцип был использован во многих шедеврах мировой культуры.

Спираль Фибоначчи образует сетку, используемую человечеством на протяжении столетий

Золотое отношение непосредственно связано с одной интересной математической концепцией – последовательностью Фибоначчи. Она была известна с древнейших времен и использовалось древнеиндийскими учеными еще в 200 году до н. э., но получила свое название в честь итальянского математика, жившего в эпоху Возрождения.

Последовательность Фибоначчи представляет собой ряд чисел, начинающийся с нуля и единицы. Каждое последующее число равно сумме двух предыдущих, таким образом первые числа последовательности образуют следующий ряд:

0, 1,1,2, 3,5, 8, 13,21,34, 55 и т. д.

В результате деления любого числа из последовательности Фибоначчи на предыдущее получается очень близкое к золотому отношению значение —1,618 (иногда больше, иногда меньше). Для больших чисел результат будет стремиться к 1,618.

Для дизайнеров важнее всего знать, что последовательность Фибоначчи, отображенная в виде логарифмической спирали, является основой сетки, которую принято считать самой гармоничной и логичной.

Используемый во всем мире стандарт ISO 216, описывающий бумажные форматы, основан на прямоугольнике с соотношением сторон, равным квадратному корню из двух

Аналогичную сетку можно построить на основе прямоугольника с соотношением сторон, равным квадратному корню из двух (его иногда путают с золотым прямоугольником). При делении пополам данный прямоугольник сохраняет то же соотношение сторон. Это особенно важно для дизайнеров, ведь такие прямоугольники стали базой международных стандартов на размеры бумаги (ISO 216, в основе которого лежит немецкий стандарт DIN 476). Данный стандарт широко используется в Европе и некоторых других странах, но не в США и Канаде. Он принят Организацией Объединенных Наций как официальный формат. Такой единообразный подход к производству, реализации и использованию бумаги оказал заметное влияние на работу графических дизайнеров во множестве стран, использующих международный стандарт, потому что он предоставил основу, на которую можно опираться при создании новых проектов.

Чуть менее обоснованным считается так называемое правило третей, которое, по сути, правилом не является и слабо связано с математикой. Появившийся в XVII веке упрощенный метод широко используется художниками, графиками, фотографами и дизайнерами (в меньшей степени архитекторами) для создания гармоничной композиции. Правило гласит, что эффективную композицию можно получить, разделив изображение натри столбца одинаковой ширины и три строки одинаковой высоты. На пересечении разделительных линий образуются четыре точки, на которых концентрируется внимание человека. Из правила третей следует, что за счет выравнивания элементов относительно этих разделительных линий или при размещении элементов в центральных точках можно сфокусировать внимание, вызвать максимальный интерес, передать энергию или напряжение.

Возможно, из-за своей простоты правило третей является наиболее полезной из многочисленных «формул», описывающих эстетическую целесообразность. Ее простота убедительна, а деление на равные трети легко запомнить. Это особенно заметно, если сравнить данный метод с более сложными вариантами, рассмотренными ранее. Золотое отношение, последовательность Фибоначчи, да и другие математические исследования оказали неоспоримое влияние на теорию сеток, но в большинстве обычных ситуаций их используют существенно реже, чем методы попроще.

К счастью, золотое отношение, наиболее важное для дизайнеров, не требует дополнительного изучения. В примерах, приведенных в данной книге, вы найдете множество практических рекомендаций по его повседневному применению. Основной подход прост – чем более простой метод используется для создания сетки, тем более эффективной будет ее организация.

Правило третей позволяет определить четыре центральные точки в любой композиции, на которых естественным образом концентрируется внимание человека

Данный текст является ознакомительным фрагментом.



Поделитесь на страничке

Следующая глава >

Похожие главы из других книг:

Формулы

Из книги автора

Формулы Электронные таблицы не имели бы и сотой доли той популярности, которая есть у них на данный момент, если бы у них не было главного преимущества – возможности работать с формулами, на лету пересчитывая сотни и тысячи введенных значений, подводя промежуточные суммы


Математические функции

Из книги автора

Математические функции Имеющиеся в VBScript функции, предназначенные для математических вычислений, описаны в табл. П2.14.Таблица П2.14. Математические функции Функция Описание Abs(x) Возвращает абсолютное значение числа х Atn(x) Возвращает арктангенс числа х Cos(x) Возвращает


Математические функции

Из книги автора

Математические функции Функции округления absВозвращает модуль числа.Синтаксис:mixed abs(mixed $number)Тип параметра $number может быть float или int, а ти п возвращаемого значения всегда совпадает с типом этого параметра.$x = abs(-4); // $x=4$x = abs(-7.45); // $x=7.45roundОкругление дробного числа до


2.1. Предыстория. Математические основы

Из книги автора

2.1. Предыстория. Математические основы Представление различных понятий окружающего нас мира при помощи графической символики уходит своими истоками в глубокую древность. В качестве примеров можно привести условные обозначения знаков Зодиака, магические символы


4.1. Математические формулы

Из книги автора

4.1. Математические формулы В текстовом редакторе Word существует специальный инструмент для работы с формулами – редактор формул. С его помощью можно создавать сложные объекты, выбирая символы с панели инструментов и задавая переменные и числа. При этом размер шрифтов,


Стандартные математические функции

Из книги автора

Стандартные математические функции ABS (X) – абсолютная величина X.ARCTAN (X) – вычисление угла в радианах, тангенс которого равен X.COS (X) – вычисление косинуса угла в радианах.EXP (X) – Вычисление ex.LN (X) – вычисление натурального логарифма от X.PI – вычисление числа Пи.RANDOM –


Стандартные математические функции

Из книги автора

Стандартные математические функции Для того, чтобы использовать эти функции в начале программы должно стоять:#include <math. h>abs (x) – возвращает абсолютное значение целого аргумента x.acos (x) – арккосинус x.asin (x) – арксинус x.atan (x) – арктангенс x.cos (x) – косинус x.exp (x) – ex.fabs


8.1.9. Массивы как математические множества

Из книги автора

8.1.9. Массивы как математические множества В большинстве языков множества напрямую не реализованы (Pascal составляет исключение). Но массивы в Ruby обладают некоторыми свойствами, которые позволяют использовать их как множества. В данном разделе мы рассмотрим эти свойства и


Математические функции

Из книги автора

Математические функции Создайте чистую таблицу. Эту таблицу мы будем использовать для примеров использования функций.Наиболее часто используемая функция в математических расчетах – это КОРЕНЬ.1. Выделите ячейку R2C2. В эту ячейку мы будем вставлять функцию.2. Нажмите


Математические функции

Из книги автора

Математические функции Функция Краткое описание abs нахождение абсолютного значения выражения типа int acos вычисление арккосинуса asin вычисление арксинуса atan вычисление арктангенса х atan2 вычисление арктангенса от у/х cabs нахождение абсолютного значения


1.7. Формулы

Из книги автора

1.7. Формулы Формулой считают любую последовательность не менее чем двух символов, которая не является словом (названием, аббревиатурой) в русском или каком-либо другом языке. Например, MATLAB является словом, f(x(0)) – нет.Формулы также нумеруются внутри одного раздела. Номер


2.4. Формулы

Из книги автора

2.4. Формулы 2.4.1. Формулы в документе, если их более одной, нумеруются арабскими цифрами, номер ставят с правой стороны страницы, в скобках, на уровне формулы.В пределах всего документа или ею частей, в случае деления документа на части, формулы имеют сквозную


Математические функции

Из книги автора

Математические функции Интерфейс математических подпрограмм заимствован преимущественно из модулей System и Math системы Delphi. function Sign(x: integer): integer; Возвращает знак числа x function Sign(x: longword): integer; Возвращает знак числа x function Sign(x: int64): integer; Возвращает знак числа


Математические формулы для женщин

Из книги автора

Математические формулы для женщин Авторы: Скамейкин, Алексей, Яблоков, Сергей Две тысячи лет мужчины провели впустую. Вместо того чтобы написать формулу красоты и здоровья или хотя бы соорудить внятное определение красоты, они ходили вокруг да около, не в силах


5.2.6. Формулы

Из книги автора

5.2.6. Формулы Формулой называется математическое выражение, начинающееся со знака равенства, которое содержит адреса ячеек, соединенные знаками арифметических операций. Также формула может содержать различные функции, аргументами которых являются как адреса ячеек, так