Данные потока
Данные потока
В реальном коде часто возникает ситуация, когда одновременно исполняются несколько экземпляров потоков, использующих один и тот же код (при создании потоков указывается одна и та же функция потока). При этом некоторые данные (например, статические объекты, глобальные объекты программного файла, объявленные вне функции потока) будут представлены для различных экземпляров потока в виде единого экземпляра данных, а другие (блок параметров функции потока, локальные данные функции потока) будут представлять собой индивидуальные экземпляры для каждого потока:
class DataBlock {
DataBlock(void);
DataBlock(DataBlock&);
}
DataBlock A;
void* ThreadProc(void *data) {
static DataBlock B;
DataBlock C, D(*(DataBlock*)data);
...
delete data;
return NULL;
}
...
for(int i = 0; i < N; i++ ) {
DataBlock E;
// ... обработка и заполнение E ...
pthread_create(NULL, NULL, &ThreadProc, new DataBlock(E));
}
В этом простейшем фрагменте кода N потоков разделяют единые экземпляры данных А и В: любые изменения, сделанные в данных потоком i, будут видимы потоку j, если, конечно, корректно выполнена синхронизация доступа к данным и потоки «совместными усилиями» не разрушат целостность блока данных. Другие блоки данных, С и D, представлены одним изолированным экземпляром на каждый поток, и никакие изменения, производимые потоком в своем экземпляре данных, не будут видны другим потокам.
Подобные эффекты не возникают в однопотоковых программах, а если они не учитываются и возникают спонтанно, то порождают крайне трудно выявляемые ошибки.[19] Очень часто такие ошибки возникают после преобразования корректных последовательных программ в потоковые. Рассмотрим простейший фрагмент кода:
int M = 0;
void Func_2(void) {
static int С = 0;
M += 2;
C++;
M -= 2;
}
void Func_1(void) { Func_2(); }
void* ThreadProc(void *data) {
Func_1();
return NULL;
}
...
for (int i = 0; i < N; i++)
pthread_create(NULL, NULL, &ThreadProc, NULL);
Можно ли здесь утверждать, что переменная M сохранит нулевое значение, а переменная С действительно является счетчиком вызовов и ее результирующее значение станет N? Ни в коей мере: после выполнения такого фрагмента в переменных может быть все что угодно. Но цепочка вызовов Func_1()->Func_2() может быть сколь угодно длинной, описание Func_2() может находиться совершенно в другом файле кода (вместе с объявлением переменной M!) и, наконец, Func_2() в нашей транскрипции может быть любой функцией из библиотек C/C++, писавшейся лет 15 назад и содержащей в своем теле статические переменные!
POSIX.1 требует, чтобы определенные в нем функции были максимально безопасными в многопоточной среде. Но переработка всех библиотек - трудоемкий и длительный процесс. API QNX (и так поступили производители многих POSIX-совместимых ОС) для потенциально небезопасных в многопоточной среде функций ввели их эквиваленты, отличающиеся суффиксом «_r», например: localtime() — localtime_r(), rand() — rand_r() и т.д. Принципиально небезопасна в многопоточной среде одна из самых «любимых» в UNIX функция — select().
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Запуск потока
Запуск потока Теперь, когда мы знаем, как запустить другой процесс, давайте рассмотрим, как осуществить запуск другого потока.Любой поток может создать другой поток в том же самом процессе; на это не налагается никаких ограничений (за исключением объема памяти, конечно!)
Атрибуты потока
Атрибуты потока В коде реальных приложений очень часто можно видеть простейшую форму вызова, порождающего новый поток, в следующем виде:pthread_create(NULL, NULL, &thread_func, NULL);И для многих целей такого вызова достаточно, так как созданный поток будет обладать свойствами,
Собственные данные потока
Собственные данные потока Описанной выше схеме общих данных приложения и локальных данных потока, достаточных для большинства «ординарных» приложений, все-таки определенно не хватает гибкости, покрывающей все потребности. Поэтому в расширениях POSIX реального времени
Завершение потока
Завершение потока Как и в случае обсуждавшегося ранее завершения процесса, для потоков мы будем отчетливо различать случаи:• «естественного» завершения выполнения потока из кода самого потока;• завершения потока извне, из кода другого потока или по сигналу. Для этого
Возврат результата потока
Возврат результата потока Выше отмечено, что вызов pthread_exit(), завершающий ожидаемый поток, может передать результат выполнения потока. То же действие может быть выполнено и оператором return потоковой функции, которая из прототипа ее определения должна возвращать значение
«Легковесность» потока
«Легковесность» потока Вот теперь, завершив краткий экскурс использования процессов и потоков, можно вернуться к вопросу, который вскользь уже звучал по ходу рассмотрения: почему и в каком смысле потоки часто называют «легкими процессами» (LWP — lightweight process)?Выполним ряд
Зона потока
Зона потока О сверхпроизводительном состоянии, называемом «потоком» (flow), написано много литературы. Некоторые программисты называют его «зоной». Как бы оно ни называлось, вероятно, вам знакомо это ощущение предельной концентрации сознания, в которое может войти
Ветвление потока управления
Ветвление потока управления Для изображения ветвления рисуются две или более стрелки, выходящие из одной точки фокуса управления объекта (фокус управления объекта 1 на рис. 8.5). При этом соответствующие условия должны быть явно указаны рядом с каждой из стрелок в форме
Создание потока
Создание потока Поток создается при первом открытии с помощью системного вызова специального файла устройства, ассоциированного с драйвером STREAMS. Как правило, процесс создает поток в два этапа: сначала создается элементарный поток, состоящий из нужного драйвера и
22.6.2 Использование меток потока
22.6.2 Использование меток потока Поток — это последовательность пакетов от источника до точки назначения, требующая специального обслуживания. Например, обработка аудио или видео в реальном масштабе времени отличается от обработки обычных данных.Метка потока
12.1. Создание потока
12.1. Создание потока ПроблемаТребуется создать поток (thread) для выполнения некоторой задачи, в то время как главный поток продолжает свою работу.РешениеСоздайте объект класса thread и передайте ему функтор, который выполняет данную работу. Создание объекта потока приведет к
4.2. Отмена потока
4.2. Отмена потока Обычно поток завершается при выходе из потоковой функции или вследствие вызова функции pthread_exit(). Но существует возможность запросить из одного потока уничтожение другого. Это называется отменой, или принудительным завершением, потока.Чтобы отменить
20.7. Состояния потока
20.7. Состояния потока Пользователей библиотеки iostream, разумеется, интересует, находится ли поток в ошибочном состоянии. Например, если мы пишемint ival;cin ival;и вводим слово "Borges", то cin переводится в состояние ошибки после неудачной попытки присвоить строковый литерал целому
8.4.2 Состояния Потока
8.4.2 Состояния Потока Каждый поток (istream или ostream) имеет ассоциированное с ним состояние, и обработка ошибок и нестандартных условий осуществляется с помощью соответствующей установки и проверки этого состояния.Поток может находиться в одном из следующих состояний:enum