3.1.1. Аппаратное представление целых чисел

We use cookies. Read the Privacy and Cookie Policy

3.1.1. Аппаратное представление целых чисел

Delphi относится к языкам, в которых целые типы данных максимально приближены к аппаратной реализации целых чисел процессором. Это позволяет выполнять операции с целочисленными данными максимально быстро, но заставляет программиста учитывать аппаратные ограничения.

Примечание

Такая реализация целых чисел может также приводить к проблемам при переносе языка на другую аппаратную платформу, но для Delphi это, видимо, не очень актуально.

Целые числа могут быть знаковыми и беззнаковыми. Сначала рассмотрим формат более простых беззнаковых чисел. Если у нас есть N двоичных разрядов для хранения такого числа, то мы можем представить любое число от 0 до 2N-1. В Delphi беззнаковые целые представлены фундаментальными типами Byte (N=8, диапазон 0..255), Word (N=16, диапазон 0..65 535) и LongWord (N=32, диапазон 0..4 294 967 295).

Примечание

Фундаментальными называются те типы данных, разрядность которых не зависит от аппаратной платформы. Кроме них существуют еще общие (generic) типы, разрядность которых определяется разрядностью платформы. В Delphi это типы Integer (знаковое целое) и Cardinal (беззнаковое целое. В имеющейся реализации они имеют 32 разряда, но при переходе на 64-разрядные компиляторы следует ожидать что эти типы также станут 64-разрядными. В частности, в 16-разрядном Turbo Pascal тип Integer был 16-разрядным а типа Cardinal там не было).

Знаковые числа устроены несколько сложнее. Старший из N бит, отводящихся на такое число, служит для хранения знака (этот бит называется знаковым). Если этот бит равен нулю, число считается положительным, а оставшиеся N-1 разрядов используются для хранения числа так же, как в случае беззнакового целого (эти разряды мы будем называть беззнаковой частью). В этом случае знаковое число ничем не отличается от беззнакового. Отрицательные значения кодируются несколько сложнее. Когда все разряды (включая знаковый бит) равны единице, это соответствует значению -1. Рассмотрим это на примере однобайтного знакового числа. Числу -1 в данном случае соответствует комбинация 1 1111111 (знаковый бит мы будем отделять от остальных пробелом), т. е. беззнаковая часть числа содержит максимально возможное значение -127. Числу -2 соответствует комбинация 1 1111110, т. е. в беззнаковой части содержится 126. В общем случае отрицательное число, хранящееся в N разрядах равно X-2N-1, где X — положительное число, хранящееся в беззнаковой части. Таким образом, N разрядов позволяют представить знаковое целое в диапазоне -2N-1..2N-1-1, причем значению -2N-1 соответствует ситуация, когда все биты, кроме знакового равны нулю.

Такая на первый взгляд не очень удобная система позволяет унифицировать операции для знаковых и беззнаковых чисел. Для примера рассмотрим число 11111110. Если его рассматривать как беззнаковое, оно равно 254, если как знаковое, то -2. Вычитая из него, например, 3, мы должны получить 251 и -5 соответственно. Как нетрудно убедиться, в беззнаковой форме 251 — это 11111011. И число -5 в знаковой форме — это тоже 11111011, т. е. результирующее состояние разрядов зависит только от начального состояния этих разрядов и вычитаемого числа и не зависит от того, знаковое или беззнаковое число представляют эти разряды. И это утверждение справедливо не только для выбранных чисел, но и вообще для любых чисел, если ни они, ни результат операции не выходят за пределы допустимого диапазона. То же самое верно для операции сложения. Поэтому в системе команд процессора нет отдельно команд знакового и беззнакового сложения и вычитания — форматы чисел таковы, что можно обойтись одной парой команд (для умножения и деления это неверно, поэтому существуют отдельно команды знакового и беззнакового умножения и деления).

Ранее мы специально оговорили, что такое удобное правило действует только до тех пор, пока аргументы и результат остаются в рамках допустимого диапазона. Рассмотрим, что произойдет, если мы выйдем за его пределы. Пусть в беззнаковой записи нам нужно из 130 вычесть 10. 130 — это 10000010, после вычитания получим 01111000 (120). Но если попытаться интерпретировать эти двоичные значения как знаковые числа, получится, что из -126 мы вычитаем 10 и получаем 120. Такими парадоксальными результатами приходится расплачиваться за унификацию операций со знаковыми и беззнаковыми числами.

Рассмотрим другой пример: из пяти (в двоичном представлении 00000101) вычесть десять (00001010). Здесь уместно вспомнить вычитание в столбик, которое изучается в школе: если в разряде уменьшаемого стоит цифра, большая, чем в соответствующем разряде вычитаемого, то из старшего разряда уменьшаемого приходится занимать единицу. То же самое и здесь: чтобы вычесть большее число из меньшего, как бы занимается единица из несуществующего девятого разряда. Это можно представить так: из числа (1)00000101 вычитается (0)00001010 и получается (0)11111011 (несуществующий девятый разряд показан в скобках: после получения результата мы про него снова забываем). Если интерпретировать полученный результат как знаковое целое, то он равен -5, т. е. именно тому, что и должно быть. Но с точки зрения беззнаковой арифметики получается, что 5-10=251.

Приведенные примеры демонстрировали ситуации, когда результат укладывался в один из диапазонов (знаковый или беззнаковый), но не укладывался в другой. Рассмотрим, что будет, если результат не попадает ни в тот, ни в другой диапазон. Пусть нам нужно сложить 10000000 и 10000000. При таком сложении снова появляется несуществующий девятый разряд, но на этот раз из него единица не занимается, а в него переносится лишняя. Получается (1)00000000. Несуществующий разряд потом игнорируется. С точки зрения знаковой интерпретации получается, что 128 + 128 = 0. С точки зрения беззнаковой — что -128 + (-128) = 0, т. е. оба результата, как и можно было ожидать с самого начала, оказываются некорректными.

Знаковые целые представлены в Delphi типами ShortInt (N=8, диапазон -128..127), SmallInt (N=16, диапазон -32 768..32 767), LongInt (N=32, диапазон -2 147 483 648..2 147 483 647) и Int64 (N=64, диапазон -9 223 372 036 854 775 808..9 223 372 036 854 775 807).

Примечание

32-разрядные процессоры не могут выполнять операции непосредственно с 64-разрядными числами, поэтому компилятор генерирует код, который обрабатывает это число по частям. Сначала операция сложения или вычитания выполняется над младшими 32-мя разрядами а потом — над старшими 32-мя, причем, если в первой операции занималась единица из несуществующего (в рамках данной операции) 33-го разряда или единица переносилась в него, при второй операции эта единица учитывается.

Далее приведены несколько примеров, иллюстрирующих сказанное.

Данный текст является ознакомительным фрагментом.