Усилитель с эмиттерным конденсатором
Усилитель с эмиттерным конденсатором
Однако обычно усилитель работает с конденсатором СЕ, подключенным параллельно RЕ. Давайте снова вставим во входной файл исключенную строку
СЕ 3 0 10uF
и заново выполним анализ. Получите в Probe только график напряжения на эмиттере, занимающий весь экран, обратите внимание, что синусоида является искаженной. Если получить график для нескольких периодов этого напряжения, то мы увидим, что прежде, чем режим устанавливается, колебание проходит фазу переходного процесса. В лаборатории обычный осциллограф показал бы форму колебаний правильно, так почему же Probe показывает иначе? Причина заключается в том, что мы используем анализ переходных процессов в схеме с реактивными элементами. Следовательно, мы должны быть внимательными и учитывать возможность появления похожих проблем в других задачах.
Получите график v(2) и убедитесь, что v(2)=0,929 В (максимальное значение переменной составляющей) и что такое же значение для v(3) составляет 3,5 мВ. Убедитесь также, что напряжение на коллекторе немного искажено: на оси Y его значение равно 8,6345 В, максимум составляет 9,614 В и минимум достигается при значении 7,756 В (рис. 10.21).
Рис. 10.21 Временные диаграммы напряжений в схеме на рис. 10.1 с блокирующим конденсатором
Убедитесь, что при f=5 кГц конденсатор не является идеальным коротким замыканием. Вычислите полное сопротивление для параллельного соединения RE и СЕ. Оно равно Z=3,18?88° Ом.
В качестве упражнения получите графики токов через СЕ и тока через RЕ. Для сравнения можно построить и ток эмиттера. График тока эмиттера можно получить как –IE(Q1). Обратите внимание на фазовые соотношения между различными токами и между напряжением на эмиттере и входным напряжением.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Усилитель с общим эмиттером и шунтирующим конденсатором
Усилитель с общим эмиттером и шунтирующим конденсатором Обычно в усилителе с общим эмиттером (ОЭ) используют шунтирующий конденсатор, подобный Се на рис. 4.5, включенный параллельно Re, что позволяет увеличить коэффициент усиления по напряжению. Проблема состоит в том,
Усилитель с общим эмиттером с параллельной обратной связью по напряжению
Усилитель с общим эмиттером с параллельной обратной связью по напряжению В качестве примера, относящегося уже не к колебательному контуру, а к усилителю, на рис. 4.18 показана упрощенная гибридная ?-модель для усилителя ОЭ с параллельной обратной связью по напряжению. Рис.
Трехкаскадный усилитель с параллельной обратной связью по напряжению
Трехкаскадный усилитель с параллельной обратной связью по напряжению Теперь рассмотрим более значительное изменение. Включим резистор обратной связи Rf=5 кОм между узлами 8 и 2 (то есть между коллектором последнего и базой первого каскадов). Это приведет к созданию
Идеальный операционный усилитель
Идеальный операционный усилитель Идеальный ОУ будет смоделирован для PSpice как усилитель с высоким входным сопротивлением, нулевым выходным сопротивлением и высоким коэффициентом усиления по напряжению. Типичные значения этих параметров показаны на рис. 5.1, где Ri=1 ГОм;
Неинвертирующий идеальный операционный усилитель
Неинвертирующий идеальный операционный усилитель На рис. 5.3 показана другая простая схема на ОУ. В ней напряжение vs подключено к неинвертирующему (+) входу. На рис. 5.4 показана модель и приведены параметры элементов. Рис. 5.3. Неинвертирующий усилитель на базе идеального
Операционный усилитель с дифференциальным входом
Операционный усилитель с дифференциальным входом Если входной сигнал подается между инвертирующим и неинвертирующим входами, на выходе ОУ получается усиленная разность входных напряжений. Чтобы упростить анализ, примем, что на рис. 5.5 Ri=R3=5 кОм и R2=R4=10 кОм. Модель PSpice для
Усилитель с общим эмиттером с нешунтированным эмиттерным резистором
Усилитель с общим эмиттером с нешунтированным эмиттерным резистором Когда усилитель ОЭ использует эмиттерный резистор, не шунтированный конденсатором, коэффициент усиления по напряжению схемы уменьшается, зато улучшается частотная характеристика. Схема с
Усилитель без эмиттерного конденсатора
Усилитель без эмиттерного конденсатора Обратимся к рис. 10.13, где приведена схема без СЕ. Входной файл для анализа: Phase Relations in СЕ AmplifierVCC 4 0 12VR1 4 1 40kR2 1 0 5kRC 4 2 1kRE 3 0 100Rs 6 5 100RB 1 1A 0.01C1 5 1 15uFQ1 2 1A 3 BJT.MODEL BJT NPN (BF=80)vs 6 0 sin (0 10mV 5kHz).TRAN 0.02ms 0.2ms.PROBE.END Проведите анализ и получите в Probe графики
12.5. МОП-транзисторный усилитель как усилитель постоянного напряжения
12.5. МОП-транзисторный усилитель как усилитель постоянного напряжения Входной фильтр выходного МОП-транзисторного каскада, состоящий из R3, R4, С2 и С3, образует полосовой фильтр. Он настроен таким образом, что подходит для любых источников низкочастотных сигналов
Кеоун Дж.
Просмотр ограничен
Смотрите доступные для ознакомления главы 👉