Операционный усилитель с дифференциальным входом
Операционный усилитель с дифференциальным входом
Если входной сигнал подается между инвертирующим и неинвертирующим входами, на выходе ОУ получается усиленная разность входных напряжений. Чтобы упростить анализ, примем, что на рис. 5.5 Ri=R3=5 кОм и R2=R4=10 кОм. Модель PSpice для идеального ОУ с внешними элементами приведена на рис. 5.6. Входной файл имеет вид:
Op Amp Giving Voltage Difference Output
VA 1 0 3V
VB 4 0 10V
E 5 0 3 2 200E3
RI 2 3 1G
R1 1 2 5k
R2 5 2 10k
R3 4 3 5k
R4 3 0 10k
.OP
.OPT nopage
.TF V(5) VB
.END
Рис. 5.5. Усилитель с дифференциальным входом на базе идеального ОУ
Рис. 5.6. Модель усилителя с дифференциальным входом на базе идеального ОУ
Анализ показывает, что выходное напряжение V(5)=14 В. Используя метод узловых потенциалов для анализа идеального ОУ, убедитесь, что
согласуется с нашими результатами. Вычисления, проведенные вручную, помогут лучше понять работу схемы. Начните с определения напряжения на неинвертирующем входе ОУ. Его легко определить, если вы вспомните, что входы ОУ не потребляют тока. Напряжение vb подается на делитель напряжения и на его выходе получается напряжение v+=6,667 В, это означает, что также составляет 6,667 В (фактически PSpice дает 6,666 В). При использовании этого напряжения вы можете легко найти токи через R1 и R2. Выходной файл показан на рис. 5.7.
**** 07/02/99 16:11:55 ******** Evaluation PSpice (Nov 1998) *********
Op Amp Giving Voltage Difference Output
**** CIRCUIT DESCRIPTION
VA 1 0 3V
VB 4 0 10V
E 5 0 3 2 200E3
RI 2 3 1G
R1 1 2 5k
R2 5 2 10k
R3 4 3 5k
R4 3 0 10k
.OP
.OPT nopage .TF V(5) VB .END
**** SMALL SIGNAL BIAS SOLUTION TEMPERATURE = 27.000 DEG C
NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE
( 1) 3.0000 ( 2) 6.6666 ( 3) 6.6667 ( 4) 10.0000
( 5) 14.0000
VOLTAGE SOURCE CURRENTS
NAME CURRENT
VA 7.333E-04
VB -6.667E-04
TOTAL POWER DISSIPATION 4.47E-03 WATTS
**** VOLTAGE-CONTROLLED VOLTAGE SOURCES
NAME E
V-SOURCE1 1.400E+01
I-SOURCE -7.333E-04
**** SMALL-SIGNAL CHARACTERISTICS
V(5)/VB = 2.000E+00
INPUT RESISTANCE AT VB = 1.500E+04
OUTPUT RESISTANCE AT V(5) = 0.000E+00
Рис. 5.7. Выходной файл с результатами анализа схемы на рис. 5.6
Не забывайте, что PSpice не должен использоваться просто для получения численного результата. Надеемся, что после решения у вас возникнет много вопросов, анализ которых поможет вам больше узнать о работе исследуемых устройств.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Усилитель с общим эмиттером и шунтирующим конденсатором
Усилитель с общим эмиттером и шунтирующим конденсатором Обычно в усилителе с общим эмиттером (ОЭ) используют шунтирующий конденсатор, подобный Се на рис. 4.5, включенный параллельно Re, что позволяет увеличить коэффициент усиления по напряжению. Проблема состоит в том,
Усилитель с общим эмиттером с параллельной обратной связью по напряжению
Усилитель с общим эмиттером с параллельной обратной связью по напряжению В качестве примера, относящегося уже не к колебательному контуру, а к усилителю, на рис. 4.18 показана упрощенная гибридная ?-модель для усилителя ОЭ с параллельной обратной связью по напряжению. Рис.
Трехкаскадный усилитель с параллельной обратной связью по напряжению
Трехкаскадный усилитель с параллельной обратной связью по напряжению Теперь рассмотрим более значительное изменение. Включим резистор обратной связи Rf=5 кОм между узлами 8 и 2 (то есть между коллектором последнего и базой первого каскадов). Это приведет к созданию
Идеальный операционный усилитель
Идеальный операционный усилитель Идеальный ОУ будет смоделирован для PSpice как усилитель с высоким входным сопротивлением, нулевым выходным сопротивлением и высоким коэффициентом усиления по напряжению. Типичные значения этих параметров показаны на рис. 5.1, где Ri=1 ГОм;
Неинвертирующий идеальный операционный усилитель
Неинвертирующий идеальный операционный усилитель На рис. 5.3 показана другая простая схема на ОУ. В ней напряжение vs подключено к неинвертирующему (+) входу. На рис. 5.4 показана модель и приведены параметры элементов. Рис. 5.3. Неинвертирующий усилитель на базе идеального
Усилитель с общим эмиттером с нешунтированным эмиттерным резистором
Усилитель с общим эмиттером с нешунтированным эмиттерным резистором Когда усилитель ОЭ использует эмиттерный резистор, не шунтированный конденсатором, коэффициент усиления по напряжению схемы уменьшается, зато улучшается частотная характеристика. Схема с
Усилитель без эмиттерного конденсатора
Усилитель без эмиттерного конденсатора Обратимся к рис. 10.13, где приведена схема без СЕ. Входной файл для анализа: Phase Relations in СЕ AmplifierVCC 4 0 12VR1 4 1 40kR2 1 0 5kRC 4 2 1kRE 3 0 100Rs 6 5 100RB 1 1A 0.01C1 5 1 15uFQ1 2 1A 3 BJT.MODEL BJT NPN (BF=80)vs 6 0 sin (0 10mV 5kHz).TRAN 0.02ms 0.2ms.PROBE.END Проведите анализ и получите в Probe графики
Усилитель с эмиттерным конденсатором
Усилитель с эмиттерным конденсатором Однако обычно усилитель работает с конденсатором СЕ, подключенным параллельно RЕ. Давайте снова вставим во входной файл исключенную строкуСЕ 3 0 10uFи заново выполним анализ. Получите в Probe только график напряжения на эмиттере,
Операционные усилители с дифференциальным входом
Операционные усилители с дифференциальным входом Используем модель, приведенную на рис. 5.6, для другого примера, в котором исследуется идеальный ОУ. Назовем этот проект idealdif и используем следующие элементы: Va=3 В, Vb=10 В, R1=5 кОм, Ri=1 ГОм, R2=10 кОм, R3=5 кОм, R4=10 кОм, коэффициент
12.5. МОП-транзисторный усилитель как усилитель постоянного напряжения
12.5. МОП-транзисторный усилитель как усилитель постоянного напряжения Входной фильтр выходного МОП-транзисторного каскада, состоящий из R3, R4, С2 и С3, образует полосовой фильтр. Он настроен таким образом, что подходит для любых источников низкочастотных сигналов