Фильтрация выходного напряжения в однополупериодных выпрямителях
Фильтрация выходного напряжения в однополупериодных выпрямителях
Сгладить выходное напряжение можно, включив конденсатор параллельно сопротивлению нагрузки, как показано на рис. 9.5. Чтобы не допустить существенного снижения выходного напряжения на интервале, когда диод не проводит, емкость конденсатора должна быть выбрана достаточно большой.
Рис. 9.5. Двухполупериодный выпрямитель с емкостным фильтром
Решим эту традиционную задачу при RL=1 кОм и стандартной частоте промышленной или бытовой сети f=60 Гц. Емкость фильтрового конденсатора выберем равной С=25 мкФ. Входной файл:
Half-Wave Rectifier with Capacitor Filter
V 1 0 sin (0 12 60)
DA 1 2 D1
R 2 0 1k
N 2 0 25uF
.MODEL D1 D
.TRAN 0.1ms 33.33ms
.PROBE
.END
Проведите анализ и выберите диапазон времени от 0 до 25 мс. Получите графики v(1) и v(2). Обратите внимание, что выходное напряжение следует за входным так же, как в первом примере, только до момента, когда напряжения достигают максимума. Затем, поскольку конденсатор был заряжен до максимального напряжения, диод перестает проводить. При этом конденсатор разряжается по экспоненте до момента, когда входное напряжение станет достаточным, чтобы снова перевести диод в проводящее состояние. Подробно эти процессы отражены на рис. 9.6.
Рис. 9.6. Процессы в однополупериодном выпрямителе с идеальным диодом и емкостным фильтром
При расчете этой схемы обычно пренебрегают падением напряжения на диоде. Уравнение для максимального тока через диод при этом равно:
Убедитесь, что при заданных значениях параметров, оно дает Im=113,7 мА.
Ток изменяется согласно уравнению i=Imsin(?t+?), где ? определен как
? = arctan ?CRL,
а угол выключения равен
?t1 = ? – ? = 180° – ?,
где t1 — момент выключения диода.
Использование этих уравнений позволяет получить ? = 83,94° и
?t1 = 96,06°.
Добавьте еще одну ось Y, получите график I(DA). Из графика на рис. 9.7 видно, что выключение происходит в момент t=4,56 мс при величине угла ?t1=98,5°. Убедитесь, что включение происходит в момент t2=18,27 мс при ?t2=34,8°.
Рис. 9.7. Временные диаграммы напряжений в схеме на на рис. 9.5
Максимальное значение выходного напряжения просто равно максимальному значению входного за вычетом падения напряжения на диоде. Это дает максимальное значение v(2)=11,23 В. Размах пульсаций выходного напряжения Vr=11,3–6,49=4,81 В. На рис 9.7 эти результаты представлены в графической форме.
Теперь нетрудно наблюдать влияние емкости С на размах пульсаций выходного напряжения. Измените емкость до значения С=50 мкФ и выполните анализ снова. Получите графики v(1) и v(2). Убедитесь, что размах пульсаций уменьшается при этом до Vr=2,802 В.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Просмотр выходного файла
Просмотр выходного файла Выберите View, Output File, чтобы увидеть результаты моделирования на экране. Они должны соответствовать рис. В.7. Рис. В.7. Выходной файл PSpice с результатами моделированияЧтобы были видны важные элементы выходного файла, на экране были удалены пустые
Просмотр выходного файла
Просмотр выходного файла Наиболее важные части выходного файла содержат информацию о напряжениях различных узлов:Node Voltage Node Voltage Node Voltage(1) 50.0000 (2) 33.3330 (3) 25.0000Потенциал узла 1 — это напряжение V10, напряжение источника питания. Потенциал узла 2 — напряжение V20, суммарное
Что еще можно извлечь из выходного файла
Что еще можно извлечь из выходного файла Приведенный входной файл не позволяет нам получить из выходного файла исчерпывающую информацию. Неясно, например, каковы будут токи в отдельных ветвях. Изменим входной файл, включив в него дополнительно следующие команды:.PRINT DC I(R1)
С двумя источниками напряжения
С двумя источниками напряжения На рис. 1.6 показана схема с двумя источниками напряжения. Хотя схема не слишком сложна, для нахождения токов и напряжений в ней требуется немало усилий. Мы предполагаем, что вы не будете применять метод контурных токов или узловых
Источник напряжения, управляемый напряжением
Источник напряжения, управляемый напряжением Схема на рис. 1.21 содержит независимый источник напряжения V и зависимый источник напряжения Е c меткой 2Va. От чего же зависит этот зависимый источник? Его выходное напряжение является функцией напряжения на резисторе R1,
Источник напряжения, управляемый током
Источник напряжения, управляемый током Данный источник напряжения управляется током в какой либо ветви схемы, как показано на рис. 1.24. Зависимый источник имеет значение 0,5I, где I — ток через резистор R1. Ток протекает от узла 1 к узлу 2. Положительный полюс зависимого
Различные виды задания формы выходного сигнала источников
Различные виды задания формы выходного сигнала источников В PSpice доступны не только независимые источники постоянного или синусоидального тока и напряжения. При исследовании переходных процессов могут быть заданы различные формы выходного сигнала, описываемые в
Исследование выходного файла
Исследование выходного файла Рассматривая выходной файл, обратите внимание, что он намного объемнее файла, приведенного для подобного примера в главе 1.Проверьте ошибки в выходном файле, но не распечатывайте его непосредственно из OrCAD PSpice. Вместо этого закройте выходной
Гармонический состав выходного напряжения
Гармонический состав выходного напряжения Продолжая изучение усилителя в проекте selfbs, сравним входное синусоидальное напряжение с синусоидальным выходным напряжением, чтобы увидеть, ограничивается ли выходное напряжение или проявляется какое-либо другое искажение
9.1.1. Частотный спектр прямоугольного напряжения
9.1.1. Частотный спектр прямоугольного напряжения Шаг 1 Начертите, используя источник напряжения типа VPULSE, схему для выработки прямоугольного напряжения, изображенную на рис. 9.1. Сохраните эту схему в папке Projects под именем FOURIER1.sch и запустите процесс ее моделирования, задав
9.1.2. Частотный спектр выходного напряжения
9.1.2. Частотный спектр выходного напряжения Частотный спектр прямоугольного напряжения прекрасно известен в электротехнике, и, чтобы его определить, вовсе не требуется прибегать к помощи PSPICE. Использовать удивительные возможности опции Fourier Analysis имеет смысл только
9.4.3. Анализ чувствительности выходного напряжения цепи постоянного тока к разбросам параметров компонентов
9.4.3. Анализ чувствительности выходного напряжения цепи постоянного тока к разбросам параметров компонентов Анализ чувствительности позволяет установить, какое влияние оказывают изменения отдельных параметров схемы на выходное напряжение. Таким образом, вы можете
Итератор выходного потока (Ostream Iterator)
Итератор выходного потока (Ostream Iterator) istream_iterator‹T› записывает (используя operator‹‹) последовательные элементы в выходной поток, из которого он был создан. Если он был создан с параметром конструктора char*, эта строка, называемая строкой разделителя (delimiter string), записывается в
Формат выходного файла
Формат выходного файла Ранее было сказано, что Studio может создавать видеофайлы в нескольких форматах. Рассмотрим форматы, поддерживаемые Pinnacle Studio.• AVI – широко распространенный формат. Видео– и аудиоданные файла AVI обрабатываются разными программами (кодеками), которые
Output file settings (Установки выходного файла)
Output file settings (Установки выходного файла) remove tables: если отмечено, то из выходного файла будут убраны таблицы.convert tables to text: если отмечено, то таблицы в выходном файле будут преобразованы в текст.remove bookmarks: если отмечено, то из выходного файла будут убраны закладки.remove pictures: если
12.1.2. Сохранение выходного результата
12.1.2. Сохранение выходного результата Если нужно сохранить полученные результаты, следует переадресовать их в файл. В приведенном ниже примере выходной результат перенаправляется в файл с именем results.txt. В качестве входного используется файл oops.txt.$ tr -s "[a?z]" < oops.txt >