«Старая» модель обработки сигнала

«Старая» модель обработки сигнала

В ранних версиях UNIX была принята единственная модель обработки сигналов, основанная на функции signal(), которая подразумевает семантику так называемых «ненадежных сигналов», принятую в этих ОС. Позже эта модель была подвержена радикальной критике, вскрывшей ее «ненадежность». Данная модель сохранена для совместимости с ранее разработанным программным обеспечением. Она обладает существенными недостатками, основными из которых являются:

• процесс не может заблокировать сигнал, то есть отложить получение сигнала на период выполнения критических участков кода;

• каждый раз при получении сигнала его диспозиция устанавливается на действие по умолчанию, и при необходимости продолжить обработку поступающих сигналов требуется повторно восстанавливать требуемый обработчик.

Вот пример (файл s2.cc) использования этой модели в коде, который уже стал иллюстративным образцом и кочует из одного источника в другой:

Ненадежная модель реакции на сигнал

#include <iostream.h>

#include <signal.h>

#include <unistd.h>

// обработчик сигнала SIGINT

static void handler(int signo) {

 // восстановить обработчик:

 signal(SIGINT, handler);

 cout << "Получен сигнал SYSINT" << endl;

}

int main() {

 // устанавливаются диспозиции сигналов:

 signal(SIGINT, handler);

 signal(SIGSEGV, SIG_DFL);

 signal(SIGTERM, SIG_IGN);

 while(true) pause();

}

Примечание

Макросы SIG_DFL и SIG_IGN определяются так:

#define SIG_ERR  (( void(*)(_SIG_ARGS))-1 )

#define SIG_DFL  (( void(*)(_SIG_ARGS))0)

#define SIG_IGN  (( void(*)(_SIG_ARGS))1)

#define SIG_HOLD (( void(*)(_SIG_ARGS))2)

где _SIG_ARGS — это фактически тип int. SIG_DFL и SIG_IGN устанавливают диспозиции сигнала «по умолчанию» и «игнорировать» соответственно, а о SIG_HOLD мы будем отдельно говорить позже.

Выполнение этой программы вам будет не так просто прекратить: на комбинацию завершения [Ctrl+C] она отвечает сообщением о получении сигнала... и все. Воспользуемся для этого посылкой программе опять же сигнала, но из другого процесса (другого экземпляра командного интерпретатора). Смотрим PID запущенного процесса:

# pidin

...

220//86 1 /s2 10 r STOPPED

...

И посылаем процессу сигнал завершения:

# kill -9 2207786 или kill -SIGKILL 2207786

Таким же образом, как показано командой kill, мы будем посылать сигналы процессам «извне» и в описываемых далее тестах, не останавливаясь подробно, как это происходит, в том числе и для сигналов реального времени (41…56).

Предыдущий пример можно переписать (файл s4.cc) для обеспечения часто требуемой на практике защиты от немедленного прерывания выполнения по [Ctrl+C], чтобы дать программе возможность выполнить все требуемые операции по завершению (сбросить буферы данных на диск, закрыть файлы, сокеты и другие используемые объекты):

#include <stdlib.h>

#include <iostream.h>

#include <signal.h>

#include <unistd.h>

static void handler(int signo) {

 cout << "Saving data ... wait. " << flush;

 sleep(2); // здесь выполняются все завершающие действия!

 cout << "                          " << flush;

 exit(EXIT_SUCCESS);

}

int main() {

 signal(SIGINT, handler);

 signal(SIGSEGV, SIG_DFL);

 signal(SIGTERM, SIG_IGN);

 while (true) pause();

}

Оператор ожидания pause() при поступлении сигналов завершается с возвратом -1, а переменная errno устанавливается в EINTR. Этот оператор дает нам еще один способ (файл s3.cc) неявного (без явной установки обработчиков) использования сигналов:

#include <stream.h>

#include <stdlib.h>

#include <unistd.h>

int main(void) {

 alarm(5);

 cout << "Waiting to die in 5 seconds ..." << endl;

 pause();

 return EXIT_SUCCESS;

}

Описываемая модель обработки сигналов обладает рядом недостатков, считается устаревшей и, более того, как было показано, не обеспечивает надежную обработку сигналов. Тем не менее эту модель достаточно широко применяют в простых случаях, например при необходимости установить тайм-аут для некоторой операции. Вот как, к примеру, устанавливается тайм-аут ожидания установления соединения в TCP/IP-клиенте [9]:

void alarm_handler(int sig) { return; }

int main() {

 ...

 signal(SIGALRM, alarm_handler); alarm(5);

 int rc = connect( ... );

 alarm(0);

 if (rc < 0 && errno == EINTR)

 cout << "Истек тайм-аут" << endl, exit(EXIT_FAILURE);

 ...

}

Здесь уместно напомнить немаловажное обстоятельство, связанное с сигналами, которое обделяется вниманием во многих руководствах по программированию: большинство блокирующих вызовов API (connect(), delay(), wait(), waitid() и многие другие) будут разблокированы при получении блокированным потоком любого сигнала. Такие вызовы API, как pause() и sigwait(), вообще предназначены только для выполнения пассивной блокировки до момента поступления сигнала. Многие их них возвращают значение или устанавливают в качестве кода системной ошибки errno значение EINTR, специально отведенное для отражения такого результата завершения, как прерывание поступившим извне сигналом. Мы неоднократно будем использовать это обстоятельство в тексте примеров программного кода, например:

if (delay(100) != 0)

В данном случае учитываем, что функция delay() возвращает нереализованный остаток «заказанного» ей ожидания, который может быть ненулевым только при прерывании этого ожидания сигналом извне (нулевое значение соответствует «естественному» истечению времени задержки).

Данный текст является ознакомительным фрагментом.