1.3. Внесение порядка в хаос
1.3. Внесение порядка в хаос
Роль декомпозиции
Как отмечает Дейкстра, "Способ управления сложными системами был известен еще в древности - divide et impera (разделяй и властвуй)" [16]. При проектировании сложной программной системы необходимо разделять ее на все меньшие и меньшие подсистемы, каждую из которых можно совершенствовать независимо. В этом случае мы не превысим пропускной способности человеческого мозга: для понимания любого уровня системы нам необходимо одновременно держать в уме информацию лишь о немногих ее частях (отнюдь не о всех). В самом деле, как заметил Парнас, декомпозиция вызвана сложностью программирования системы, поскольку именно эта сложность вынуждает делить пространство состояний системы [17].
Алгоритмическая декомпозиция. Большинство из нас формально обучено структурному проектированию "сверху вниз", и мы воспринимаем декомпозицию как обычное разделение алгоритмов, где каждый модуль системы выполняет один из этапов общего процесса. На рис. 1-2 приведен в качестве примера один из продуктов структурного проектирования: структурная схема, которая показывает связи между различными функциональными элементами системы. Данная структурная схема иллюстрирует часть программной схемы, изменяющей содержание управляющего файла. Она была автоматически получена из диаграммы потока данных специальной экспертной системой, которой известны правила структурного проектирования [18].
Объектно-ориентированная декомпозиция. Предположим, что у этой задачи существует альтернативный способ декомпозиции. На рис. 1-3 мы разделили систему, выбрав в качестве критерия декомпозиции принадлежность ее элементов к различным абстракциям данной проблемной области. Прежде чем разделять задачу на шаги типа Get formatted update (Получить изменения в отформатированном виде) и Add check sum (Прибавить к контрольной сумме), мы должны определить такие объекты как Master File (Основной файл) и Check Sum (Контрольная сумма), которые заимствуются из словаря предметной области.
Хотя обе схемы решают одну и ту же задачу, но они делают это разными способами. Во второй декомпозиции мир представлен совокупностью автономных действующих лиц, которые взаимодействуют друг с другом, чтобы обеспечить поведение системы, соответствующее более высокому уровню. Get formatted update (Получить изменения в отформатированном виде) больше не присутствует в качестве независимого алгоритма; это действие существует теперь как операция над объектом File of Updates (Файл изменений). Эта операция создает другой объект - Update to Card (Изменения в карте). Таким образом, каждый объект обладает своим собственным поведением, и каждый из них моделирует некоторый объект реального мира. С этой точки зрения объект является вполне осязаемой вещью, которая демонстрирует вполне определенное поведение. Объекты что-то делают, и мы можем, послав им сообщение, попросить их выполнить то-то и то-то. Так как наша декомпозиция основана на объектах, а не на алгоритмах, мы называем ее объектно-ориентированной декомпозицией.
Рис. 1-2. Алгоритмическая декомпозиция.
Декомпозиция: алгоритмическая или объектно-ориентированная? Какая декомпозиция сложной системы правильнее - по алгоритмам или по объектам? В этом вопросе есть подвох, и правильный ответ на него: важны оба аспекта. Разделение по алгоритмам концентрирует внимание на порядке происходящих событий, а разделение по объектам придает особое значение агентам, которые являются либо объектами, либо субъектами действия. Однако мы не можем сконструировать сложную систему одновременно двумя способами, тем более, что эти способы по сути ортогональны [Лэнгдон предполагает, что эта ортогональность изучалась с древних времен. Он пишет: "К. X. Ваддингтон отметил, что такая дуальность взглядов прослеживается до древних греков. Пассивный взгляд предлагался Демокритом, который утверждал, что мир состоит из атомов. Эта позиция Демокрита ставила в центр всего материю. Классическим представителем другой стороны - активного взгляда - был Гераклит, который выделял понятие процесса"[34]]. Мы должны начать разделение системы либо по алгоритмам, либо по объектам, а затем, используя полученную структуру, попытаться рассмотреть проблему с другой точки зрения.
Опыт показывает, что полезнее начинать с объектной декомпозиции. Такое начало поможет нам лучше справиться с приданием организованности сложности программных систем. Выше этот объектный подход помог нам при описании таких непохожих систем, как компьютеры, растения, галактики и общественные институты. Как будет видно в дальнейшем (в главах 2 и 7), объектная декомпозиция имеет несколько чрезвычайно важных преимуществ перед алгоритмической. Объектная декомпозиция уменьшает размер программных систем за счет повторного использования общих механизмов, что приводит к существенной экономии выразительных средств. Объектно-ориентированные системы более гибки и проще эволюционируют со временем, потому что их схемы базируется на устойчивых промежуточных формах. Действительно, объектная декомпозиция существенно снижает риск при создании сложной программной системы, так как она развивается из меньших систем, в которых мы уже уверены. Более того, объектная декомпозиция помогает нам разобраться в сложной программной системе, предлагая нам разумные решения относительно выбора подпространства большого пространства состояний.
Преимущества объектно-ориентированных систем демонстрируются в главах 8-12 примерами прикладных программ, относящихся к различным областям. Следующая врезка сопоставляет объектно-ориентированное проектирование с более традиционными подходами.
Рис. 1-3. Объектно-ориентированная декомпозиция.
Роль абстракции
Выше мы ссылались на эксперименты Миллера, в которых было установлено, что обычно человек может одновременно воспринять лишь 7?2 единицы информации. Это число, по-видимому, не зависит от содержания информации. Как замечает сам Миллер: "Размер нашей памяти накладывает жесткие ограничения на количество информации, которое мы можем воспринять, обработать и запомнить. Организуя поступление входной информации одновременно по нескольким различным каналам и в виде последовательности отдельных порций, мы можем прорвать... этот информационный затор" [35]. В современной терминологии это называют разбиением или выделением абстракций.
Методы проектирования программных систем Мы решили, что будет полезно, если мы разграничим понятия метод и методология. Метод - это последовательный процесс создания моделей, которые описывают вполне определенными средствами различные стороны разрабатываемой программной системы. Методология - это совокупность методов, применяемых в жизненном цикле разработки программного обеспечения и объединенных одним общим философским подходом. Методы важны по нескольким причинам. Во-первых, они упорядочивают процесс создания сложных программных систем, как общие средства доступные для всей группы разработчиков. Во-вторых, они позволяют менеджерам в процессе разработки оценить степень продвижения и риск.
Методы появились как ответ на растущую сложность программных систем. На заре компьютерной эры очень трудно было написать большую программу, потому что возможности компьютеров были ограничены. Ограничения проистекали из объема оперативной памяти, скорости считывания информации с вторичных носителей (ими служили магнитные ленты) и быстродействия процессоров, тактовый цикл которых был равен сотням микросекунд. В 60-70-е годы эффективность применения компьютеров резко возросла, цены на них стали падать, а возможности ЭВМ увеличились. В результате стало выгодно, да и необходимо создавать все больше прикладных программ повышенной сложности. В качестве основных инструментов создания программных продуктов начали применяться алгоритмические языки высокого уровня. Эти языки расширили возможности отдельных программистов и групп разработчиков, что по иронии судьбы в свою очередь привело к увеличению уровня сложности программных систем.
В 60-70-е годы было разработано много методов, помогающих справиться с растущей сложностью программ. Наибольшее распространение получило структурное проектирование по методу сверху вниз. Метод был непосредственно основан на топологии традиционных языков высокого уровня типа FORTRAN или COBOL. В этих языках основной базовой единицей является подпрограмма, и программа в целом принимает форму дерева, в котором одни подпрограммы в процессе работы вызывают другие подпрограммы. Структурное проектирование использует именно такой подход: алгоритмическая декомпозиция применяется для разбиения большой задачи на более мелкие.
Тогда же стали появляться компьютеры еще больших, поистине гигантских возможностей. Значение структурного подхода осталось прежним, но как замечает Стейн, "оказалось, что структурный подход не работает, если объем программы превышает приблизительно 100000 строк" [19]. В последнее время появились десятки методов, в большинстве которых устранены очевидные недостатки структурного проектирования. Наиболее удачные методы были разработаны Петерсом [20], Йеном и Цаи [21], а также фирмой Teledyne-Brown Engineering [22]. Большинство этих методов представляют собой вариации на одни и те же темы. Саммервилль предлагает разделить их на три основные группы [23]:
• метод структурного проектирования сверху вниз;
• метод потоков данных;
• объектно-ориентированное проектирование.
Примеры структурного проектирования приведены в работах Иордана и Константина [24], Майерса [25] и Пейдж-Джонса [26]. Основы его изложены в работах Вирта [27, 28], Даля, Дейкстры и Хоара [29]; интересный вариант структурного подхода можно найти в работе Милса, Лингера и Хевнера [30]. В каждом из этих подходов присутствует алгоритмическая декомпозиция. Следует отметить, что большинство существующих программ написано, по-видимому, в соответствии с одним из этих методов. Тем не менее структурный подход не позволяет выделить абстракции и обеспечить ограничение доступа к данным; он также не предоставляет достаточных средств для организации параллелизма. Структурный метод не может обеспечить создание предельно сложных систем, и он, как правило, неэффективен в объектных и объектно-ориентированных языках программирования.
Метод потоков данных лучше всего описан в ранней работе Джексона [31, 32], а также Варниера и Орра [33]. В этом методе программная система рассматривается как преобразователь входных потоков в выходные. Метод потоков данных, как и структурный метод, с успехом применялся при решении ряда сложных задач, в частности, в системах информационного обеспечения, где существуют прямые связи между входными и выходными потоками системы и где не требуется уделять особого внимания быстродействию.
Объектно-ориентированное проектирование (object-oriented design, OOD) - это подход, основы которого изложены в данной книге. В основе OOD лежит представление о том, что программную систему необходимо проектировать как совокупность взаимодействующих друг с другом объектов, рассматривая каждый объект как экземпляр определенного класса, причем классы образуют иерархию. Объектно-ориентированный подход отражает топологию новейших языков высокого уровня, таких как Smalltalk, Object Pascal, C++, CLOS и Ada.
Вулф так описывает этот процесс: "Люди развили чрезвычайно эффективную технологию преодоления сложности. Мы абстрагируемся от нее. Будучи не в состоянии полностью воссоздать сложный объект, мы просто игнорируем не слишком важные детали и, таким образом, имеем дело с обобщенной, идеализированной моделью объекта" [36]. Например, изучая процесс фотосинтеза у растений, мы концентрируем внимание на химических реакциях в определенных клетках листа и не обращаем внимание на остальные части - черенки, жилки и т.д. И хотя мы по-прежнему вынуждены охватывать одновременно значительное количество информации, но благодаря абстракции мы пользуемся единицами информации существенно большего семантического объема. Это особенно верно, когда мы рассматриваем мир с объектно-ориентированной точки зрения, поскольку объекты как абстракции реального мира представляют собой отдельные насыщенные связные информационные единицы.
В главе 2 понятие абстракции рассмотрено более детально.
Роль иерархии
Другим способом, расширяющим информационные единицы, является организация внутри системы иерархий классов и объектов. Объектная структура важна, так как она иллюстрирует схему взаимодействия объектов друг с другом, которое осуществляется с помощью механизмов взаимодействия. Структура классов не менее важна: она определяет общность структур и поведения внутри системы. Зачем, например, изучать фотосинтез каждой клетки отдельного листа растения, когда достаточно изучить одну такую клетку, поскольку мы ожидаем, что все остальные ведут себя подобным же образом. И хотя мы рассматриваем каждый объект определенного типа как отдельный, можно предположить, что его поведение будет похоже на поведение других объектов того же типа. Классифицируя объекты по группам родственных абстракций (например, типы клеток растений в противовес клеткам животных), мы четко разделяем общие и уникальные свойства разных объектов, что помогает нам затем справляться со свойственной им сложностью [37].
Определить иерархии в сложной программной системе не всегда легко, так как это требует разработки моделей многих объектов, поведение каждого из которых может отличаться чрезвычайной сложностью. Однако после их определения, структура сложной системы и, в свою очередь, наше понимание ее сразу во многом проясняются. В главе 3 детально рассматривается природа иерархий классов и объектов, а в главе 4 описываются приемы распознавания этих структур.