Адреса IPv6, совместимые с IPv4

Адреса IPv6, совместимые с IPv4

Для перехода от версии IPv4 к IPv6 планировалось также использовать адреса IPv6, совместимые с IPv4 (IPv4-compatible IPv6 addresses). Администратор узла, поддерживающего как IPv4, так и IPv6, и не имеющего соседнего IPv6-маршрутизатора, должен создать DNS запись типа AAAA, содержащую адрес IPv6, совместимый с IPv4. Любой другой IPv6-узел, посылающий IPv6-дейтаграмму на адрес IPv6, совместимый с IPv4, должен упаковать (encapsulate) IPv6-дейтаграмму в заголовок IPv4 — такой способ называется автоматическим туннелированием (automatic tunnel). Однако после рассмотрения вопросов, связанных с внедрением IPv6, использование этой возможности заметно сократилось. Более подробно вопросы туннелирования будут рассмотрены в разделе Б.3, а на рис. Б.2 будет приведен пример IPv6-дейтаграмм такого типа, упакованных в заголовок IPv4.

На рис. А.7 показан формат адреса IPv4, совместимого с IPv6.

Рис. А.7. Адрес IPv6, совместимый с IPv4

В качестве примера такого адреса можно привести ::206.62.226.33.

Адреса IPv6, совместимые с IPv4 могут появляться и в пакетах IPv6, не передающихся по туннелю, если используется механизм перехода SIIT IPv4/IPv6 (RFC 2765 [83]).

Поделитесь на страничке

Следующая глава >

Похожие главы из других книг

Правило 45: Разрабатывайте шаблоны функций-членов так, чтобы они принимали «все совместимые типы»

Из книги Эффективное использование C++. 55 верных способов улучшить структуру и код ваших программ автора Мейерс Скотт

Правило 45: Разрабатывайте шаблоны функций-членов так, чтобы они принимали «все совместимые типы» Интеллектуальные указатели – это объекты, которые ведут себя во многом подобно обычным указателям, но добавляют функциональность, которую последние не предоставляют.


22.4 Адреса IPv6

Из книги TCP/IP Архитектура, протоколы, реализация (включая IP версии 6 и IP Security) автора Фейт Сидни М

22.4 Адреса IPv6 Адреса IPv6 имеют длину 16 октетов (128 бит). Для записи адресов используется компактная (хотя и уродливая) нотация. Адреса представлены как 8 шестнадцатеричных чисел, разделенных двоеточиями. Каждое шестнадцатеричное число представляет 16 бит.


22.8.3 Адреса интерфейсов IPv6

Из книги Инфраструктуры открытых ключей автора Полянская Ольга Юрьевна

22.8.3 Адреса интерфейсов IPv6 Каждый интерфейс версии 6 имеет список соответствующих ему адресов. Как минимум, список содержит уникальный адрес локальной связи (link local address), имеющий формат: 1111111010 (10 бит) 00…00 Уникальный адрес технологии связи Каждому узлу необходим способ


PKI-совместимые приложения

Из книги Firebird РУКОВОДСТВО РАЗРАБОТЧИКА БАЗ ДАННЫХ автора Борри Хелен

PKI-совместимые приложения Чтобы приложение могло использовать необходимые сервисы безопасности и функции управления жизненным циклом ключей и сертификатов, оно должно быть PKI-совместимым. Поставщики технологии должны предлагать стандартные PKI-совместимые приложения,


Наборы, совместимые для объединения

Из книги UNIX: разработка сетевых приложений автора Стивенс Уильям Ричард

Наборы, совместимые для объединения Для каждой операции SELECT, создающей входной поток для UNION, спецификация должна содержать список столбцов, одинаковый для всех других операций (количество и порядок столбцов) с соответствующими типами данных. Предположим, мы имеем


Структура адреса сокета IPv4

Из книги автора

Структура адреса сокета IPv4 Структура адреса сокета IPv4, обычно называемая структурой адреса сокета Интернета, именуется sockaddr_in и определяется в заголовочном файле <netinet/in.h>. В листинге 3.1[1] представлено определение POSIX.Листинг 3.1. Структура адреса сокета Интернета (IPv4):


Структура адреса сокета IPv6

Из книги автора

Структура адреса сокета IPv6 Структура адреса сокета IPv6 задается при помощи включения заголовочного файла <netinet/in.h>, как показано в листинге 3.3.Листинг 3.3. Структура адреса сокета IPv6: sockaddr_in6struct in6_addr { uint8_t s6_addr[16]; /* 128-разрядный адрес IPv6 */                      /* сетевой


Глава 12 Совместимость IPv4 и IPv6

Из книги автора

Глава 12 Совместимость IPv4 и IPv6 12.1. Введение В течение ближайших лет, возможно, произойдет постепенный переход Интернета с IPv4 на IPv6. Во время этого переходного периода важно, чтобы существующие приложения IPv4 продолжали работать с более новыми приложениями IPv6. Например,


12.2. Клиент IPv4, сервер IPv6

Из книги автора

12.2. Клиент IPv4, сервер IPv6 Общим свойством узла с двойным стеком является то, что серверы IPv6 могут выполнять обслуживание клиентов IPv4 и IPv6. Это достигается за счет преобразования адресов IPv4 к виду IPv6 (см. рис. А.6). Пример такого преобразования приведен на рис. 12.1. Рис. 12.1.


12.3. Клиент IPv6, сервер IPv4

Из книги автора

12.3. Клиент IPv6, сервер IPv4 Теперь мы поменяем протоколы, используемые клиентом и сервером в примере из предыдущего раздела. Сначала рассмотрим TCP-клиент IPv6, запущенный на узле с двойным стеком протоколов.1. Сервер IPv4 запускается на узле, поддерживающем только IPv4, и создает


Резюме: совместимость IPv4 и IPv6

Из книги автора

Резюме: совместимость IPv4 и IPv6 Таблица 12.2, содержащая сочетания клиентов и серверов, подводит итог обсуждению, проведенному в данном и предыдущем разделах.Таблица 12.2. Обобщение совместимости клиентов и серверов IPv4 и IPv6 Сервер IPv4, узел только IPv4 (только А) Сервер IPv4, узел


12.4. Макроопределения проверки адреса IPv6

Из книги автора

12.4. Макроопределения проверки адреса IPv6 Существует небольшой класс приложений IPv6, которые должны знать, с каким собеседником они взаимодействуют (IPv4 или IPv6). Эти приложения должны знать, является ли адрес собеседника адресом IPv4, преобразованным к виду IPv6. Определены


Адреса IPv4 класса D

Из книги автора

Адреса IPv4 класса D Адреса класса D, лежащие в диапазоне от 224.0.0.0 до 239.255.255.255, в IPv4 являются адресами многоадресной передачи (см. табл. А.1). Младшие 28 бит адреса класса D образуют идентификатор группы многоадресной передачи (multicast group ID), а 32-разрядный адрес называется адресом


Адреса многоадресной передачи IPv6

Из книги автора

Адреса многоадресной передачи IPv6 Старший байт адреса многоадресной передачи IPv6 имеет значение ff. На рис. 21.1 показано сопоставление 16-байтового адреса многоадресной передачи IPv6 6-байтовому адресу Ethernet. Младшие 32 бита группового адреса копируются в младшие 32 бита адреса


Приложение А Протоколы IPv4, IPv6, ICMPv4 и ICMFV6

Из книги автора

Приложение А Протоколы IPv4, IPv6, ICMPv4 и ICMFV6 А.1. Введение В этом приложении приведен обзор протоколов IPv4, IPv6, ICMPv4 и ICMPv6. Данный материал позволяет глубже понять рассмотренные в главе 2 протоколы TCP и UDP. Некоторые возможности IP и ICMP рассматриваются также более подробно и в других


Адреса IPv4, преобразованные к виду IPv6

Из книги автора

Адреса IPv4, преобразованные к виду IPv6 Адреса IPv4, преобразованные к виду IPv6 (IPv4-mapped IPv6 addresses), позволяют приложениям, запущенным на узлах, поддерживающих как IPv4, так и IPv6, связываться с узлами, поддерживающими только IPv4, в процессе перехода сети Интернет на версию протокола IPv6.