Глава 12 Совместимость IPv4 и IPv6

Глава 12

Совместимость IPv4 и IPv6

12.1. Введение

В течение ближайших лет, возможно, произойдет постепенный переход Интернета с IPv4 на IPv6. Во время этого переходного периода важно, чтобы существующие приложения IPv4 продолжали работать с более новыми приложениями IPv6. Например, производитель не может предложить клиент Telnet, работающий только с серверами IPv6, — он должен предоставить и клиент для серверов IPv4, и клиент для серверов IPv6. Мы бы предпочли обойтись одним Telnet-клиентом IPv6, способным работать с серверами и IPv4, и IPv6, и одним сервером Telnet, который работал бы с клиентами и IPv4, и IPv6. В этой главе мы увидим, как это сделать.

В этой главе мы предполагаем, что на узлах работают двойные стеки протоколов (dual stacks), то есть набор протоколов IPv4 и набор протоколов IPv6. На рис. 2.1 представлен узел с двойным стеком. Возможно, узлы и маршрутизаторы будут работать подобным образом в течение многих лет в процессе перехода к IPv6. В какой-то момент многие системы смогут отключить свои стеки IPv4, но только с течением времени можно будет сказать, когда это произойдет, да и произойдет ли вообще.

В этой главе мы обсудим, каким образом приложения IPv4 и IPv6 могут взаимодействовать друг с другом. Существует четыре комбинации клиентов и серверов, использующих либо IPv4, либо IPv6, что показано в табл. 12.1.

Таблица 12.1. Сочетания клиентов и серверов, использующих IPv4 или IPv6

Сервер IPv4 Сервер IPv6
Клиент IPv4 и серверы Почти все существующие клиенты Обсуждается в разделе 12.2
Клиент IPv6 Обсуждается в разделе 12.3 Простые модификации большинства существующих клиентов (например, клиент из листинга 1.1 модифицируется к виду, представленному в листинге 1.2)

Мы не будем подробно рассматривать два сценария, когда клиент и сервер используют один и тот же протокол. Более интересны случаи, когда клиент и сервер используют разные протоколы.

Поделитесь на страничке

Следующая глава >

Похожие главы из других книг

17.5.2. Адресация IPv4

Из книги Разработка приложений в среде Linux. Второе издание автора Джонсон Майкл К.

17.5.2. Адресация IPv4 Соединения IPv4 представляют собой кортеж из 4-х элементов (локальный хост, локальный порт, удаленный хост, удаленный порт). До установки соединения необходимо определить каждую его часть. Элементы локальный хост и удаленный хост являются IPv4-адресами.


17.8.1. Манипулирование IPv4-адресами

Из книги UNIX: разработка сетевых приложений автора Стивенс Уильям Ричард

17.8.1. Манипулирование IPv4-адресами Функции inet_ntop() и inet_pton() являются относительно новыми и были введены для того, чтобы один набор функций мог обрабатывать и IPv4-, и IPv6-адреса. До их появления в программах использовались функции inet_addr(), inet_aton() и inet_ntoa(), которые предназначены


Структура адреса сокета IPv4

Из книги Виртуальная библиотека Delphi автора

Структура адреса сокета IPv4 Структура адреса сокета IPv4, обычно называемая структурой адреса сокета Интернета, именуется sockaddr_in и определяется в заголовочном файле <netinet/in.h>. В листинге 3.1[1] представлено определение POSIX.Листинг 3.1. Структура адреса сокета Интернета (IPv4):


7.6. Параметры сокетов IPv4

Из книги автора

7.6. Параметры сокетов IPv4 Эти параметры сокетов обрабатываются IPv4 и для них аргумент level равен IPPROTO_IP. Обсуждение пяти параметров сокетов многоадресной передачи мы отложим до раздела


12.2. Клиент IPv4, сервер IPv6

Из книги автора

12.2. Клиент IPv4, сервер IPv6 Общим свойством узла с двойным стеком является то, что серверы IPv6 могут выполнять обслуживание клиентов IPv4 и IPv6. Это достигается за счет преобразования адресов IPv4 к виду IPv6 (см. рис. А.6). Пример такого преобразования приведен на рис. 12.1. Рис. 12.1.


12.3. Клиент IPv6, сервер IPv4

Из книги автора

12.3. Клиент IPv6, сервер IPv4 Теперь мы поменяем протоколы, используемые клиентом и сервером в примере из предыдущего раздела. Сначала рассмотрим TCP-клиент IPv6, запущенный на узле с двойным стеком протоколов.1. Сервер IPv4 запускается на узле, поддерживающем только IPv4, и создает


Резюме: совместимость IPv4 и IPv6

Из книги автора

Резюме: совместимость IPv4 и IPv6 Таблица 12.2, содержащая сочетания клиентов и серверов, подводит итог обсуждению, проведенному в данном и предыдущем разделах.Таблица 12.2. Обобщение совместимости клиентов и серверов IPv4 и IPv6 Сервер IPv4, узел только IPv4 (только А) Сервер IPv4, узел


Адреса IPv4 класса D

Из книги автора

Адреса IPv4 класса D Адреса класса D, лежащие в диапазоне от 224.0.0.0 до 239.255.255.255, в IPv4 являются адресами многоадресной передачи (см. табл. А.1). Младшие 28 бит адреса класса D образуют идентификатор группы многоадресной передачи (multicast group ID), а 32-разрядный адрес называется адресом


27.2. Параметры IPv4

Из книги автора

27.2. Параметры IPv4 На рис. А.1 мы показываем параметры, расположенные после 20-байтового заголовка IPv4. Как отмечено при рассмотрении этого рисунка, 4-разрядное поле длины ограничивает общий размер заголовка IPv4 до 15 32-разрядных слов (что составляет 60 байт), так что на параметры


Приложение А Протоколы IPv4, IPv6, ICMPv4 и ICMFV6

Из книги автора

Приложение А Протоколы IPv4, IPv6, ICMPv4 и ICMFV6 А.1. Введение В этом приложении приведен обзор протоколов IPv4, IPv6, ICMPv4 и ICMPv6. Данный материал позволяет глубже понять рассмотренные в главе 2 протоколы TCP и UDP. Некоторые возможности IP и ICMP рассматриваются также более подробно и в других


А.2. Заголовок IPv4

Из книги автора

А.2. Заголовок IPv4 Уровень IP обеспечивает не ориентированную на установление соединения (connectionless) и ненадежную службу доставки дейтаграмм (RFC 791 [94]). Уровень IP делает все возможное для доставки IP-дейтаграммы определенному адресату, но не гарантирует, что дейтаграмма будет


А.4. Адресация IPv4

Из книги автора

А.4. Адресация IPv4 Адреса IPv4 состоят из 32 разрядов и обычно записываются в виде последовательности из четырех чисел в десятичной форме, разделенных точками. Такая запись называется точечно-десятичной. Первое из четырех чисел определяет тип адреса (табл. А.1). Исторически


Адреса IPv4, преобразованные к виду IPv6

Из книги автора

Адреса IPv4, преобразованные к виду IPv6 Адреса IPv4, преобразованные к виду IPv6 (IPv4-mapped IPv6 addresses), позволяют приложениям, запущенным на узлах, поддерживающих как IPv4, так и IPv6, связываться с узлами, поддерживающими только IPv4, в процессе перехода сети Интернет на версию протокола IPv6.


Адреса IPv6, совместимые с IPv4

Из книги автора

Адреса IPv6, совместимые с IPv4 Для перехода от версии IPv4 к IPv6 планировалось также использовать адреса IPv6, совместимые с IPv4 (IPv4-compatible IPv6 addresses). Администратор узла, поддерживающего как IPv4, так и IPv6, и не имеющего соседнего IPv6-маршрутизатора, должен создать DNS запись типа AAAA,


Совместимость

Из книги автора

Совместимость 1. Какие операционные системы Delphi поддерживает? Версия Delphi 1.0 предназначается для Windows 3.1x. Hет причин, по которым Delphi 1.0 не работал бы в системах, которые обеспечивают эмуляцию Windows 3.1, подобно OS/2 Warp, Windows NT, UnixWare 2.0 и т.д. Delphi 2.0 предназначена для работы под Win32/Intel