4.7. Функции fork и exec

4.7. Функции fork и exec

Прежде чем рассматривать создание параллельного сервера (что мы сделаем в следующем разделе), необходимо описать функцию Unix fork. Эта функция является единственным способом создания нового процесса в Unix.

#include <unistd.h>

pid_t fork(void);

Возвращает: 0 в дочернем процессе, идентификатор дочернего процесса в родительском процессе, -1 в случае ошибки

Если вы никогда не встречались с этой функцией, трудным для понимания может оказаться то, что она вызывается один раз, а возвращает два значения. Одно значение эта функция возвращает в вызывающем процессе (который называется родительским процессом) — этим значением является идентификатор созданного процесса (который называется дочерним процессом). Второе значение (нуль) она возвращает в дочернем процессе. Следовательно, по возвращаемому значению можно определить, является ли данный процесс родительским или дочерним.

Причина того, что функция fork возвращает в дочернем процессе нуль, а не идентификатор родительского процесса, заключается в том, что у дочернего процесса есть только один родитель, и дочерний процесс всегда может получить идентификатор родительского, вызвав функцию getppid. У родителя же может быть любое количество дочерних процессов, и способа получить их идентификаторы не существует. Если родительскому процессу требуется отслеживать идентификаторы своих дочерних процессов, он должен записывать возвращаемые значения функции fork.

Все дескрипторы, открытые в родительском процессе перед вызовом функции fork, становятся доступными дочерним процессам. Вы увидите, как это свойство используется сетевыми серверами: родительский процесс вызывает функцию accept, а затем функцию fork. Затем присоединенный сокет совместно используется родительским и дочерним процессами. Обычно дочерний процесс использует присоединенный сокет для чтения и записи, а родительский процесс только закрывает присоединенный сокет.

Существует два типичных случая применения функции fork:

1. Процесс создает свои копии таким образом, что каждая из них может обрабатывать одно задание. Это типичная ситуация для сетевых серверов. Далее в тексте вы увидите множество подобных примеров.

2. Процесс хочет запустить другую программу. Поскольку единственный способ создать новый процесс — это вызвать функцию fork, процесс сначала вызывает функцию fork, чтобы создать свою копию, а затем одна из копий (обычно дочерний процесс) вызывает функцию exec (ее описание следует за описанием функции fork), чтобы заменить себя новой программой. Этот сценарий типичен для таких программ, как интерпретаторы командной строки.

Единственный способ запустить в Unix на выполнение какой-либо файл — вызвать функцию exec. (Мы будем часто использовать общее выражение «функция exec», когда неважно, какая из шести функций семейства exec вызывается.) Функция exec заменяет копию текущего процесса новым программным файлом, причем в новой программе обычно запускается функция main. Идентификатор процесса при этом не изменяется. Процесс, вызывающий функцию exec, мы будем называть вызывающим процессом, а выполняемую при этом программу — новой программой.

ПРИМЕЧАНИЕ

В старых описаниях и книгах новая программа ошибочно называется «новым процессом». Это неверно, поскольку новый процесс не создается.

Различие между шестью функциями exec заключается в том, что они допускают различные способы задания аргументов:

? выполняемый программный файл может быть задан или именем файла (filename), или полным именем (pathname);

? аргументы новой программы либо перечисляются один за другим, либо на них имеется ссылка через массив указателей;

? новой программе либо передается окружение вызывающего процесса, либо задается новое окружение.

#include <unistd.h>

int execl(const char *pathname, const char *arg0, ... /* (char*)0 */ );

int execv(const char *pathname, char *const argv[]);

int execle(const char *pathname, const char *arg0 ... /* (char*)0,

 char *const envp[] */ );

int execve(const char *pathname, char *const argv[], char *const envp[]);

int execlp(const char *filename, const char *arg0, .... /* (char*)0 */ );

int execvp(const char *filename, char *const argv[]);

Все шесть функций возвращают: -1 в случае ошибки, если же функция выполнена успешно, то ничего не возвращается

Эти функции возвращают вызывающему процессу значение -1, только если происходит ошибка. Иначе управление передается в начало новой программы, обычно функции main.

Отношения между этими шестью функциями показаны на рис. 4.4. Обычно только функция execve является системным вызовом внутри ядра, а остальные представляют собой библиотечные функции, вызывающие execve.

Рис. 4.4. Отношения между шестью функциями exec

Отметим различия между этими функциями:

1. Три верхних функции (см. рис. 4.4) принимают каждую строку как отдельный аргумент, причем перечень аргументов завершается пустым указателем (так как их количество может быть различным). У трех нижних функций имеется массив argv, содержащий указатели на строки. Этот массив должен содержать пустой указатель, определяющий конец массива, поскольку размер массива не задается.

2. Две функции в левой колонке получают аргумент filename. Он преобразуется в pathname с использованием текущей переменной окружения PATH. Если аргумент filename функций execlp или execvp содержит косую черту (/) в любом месте строки, переменная PATH не используется. Четыре функции в двух правых колонках получают полностью определенный аргумент pathname.

3. Четыре функции в двух левых колонках не получают явного списка переменных окружения. Вместо этого с помощью текущего значения внешней переменной environ создается список переменных окружения, который передается новой программе. Две функции в правой колонке получают точный список переменных окружения. Массив указателей envp должен быть завершен пустым указателем.

Дескрипторы, открытые в процессе перед вызовом функции exec, обычно остаются открытыми во время ее выполнения. Мы говорим «обычно», поскольку это свойство может быть отключено при использовании функции fcntl для установки флага дескриптора FD_CLOEXEC. Это нужно серверу inetd, о котором пойдет речь в разделе 13.5.

Поделитесь на страничке

Следующая глава >

Похожие главы из других книг

9.1.2.1 Выгрузка при выполнении системной функции fork

Из книги Архитектура операционной системы UNIX автора Бах Морис Дж

9.1.2.1 Выгрузка при выполнении системной функции fork В описании системной функции fork (раздел 7.1) предполагалось, что процесс-родитель получил в свое распоряжение память, достаточную для создания контекста потомка. Если это условие не выполняется, ядро выгружает процесс из


9.2.1.1 Функция fork в системе с замещением страниц

Из книги Linux-сервер своими руками автора Колисниченко Денис Николаевич

9.2.1.1 Функция fork в системе с замещением страниц Как уже говорилось в разделе 7.1, во время выполнения функции fork ядро создает копию каждой области родительского процесса и присоединяет ее к процессу-потомку. В системе с замещением страниц ядро по традиции создает


5.1. Системные вызовы fork() и ехес()

Из книги UNIX: взаимодействие процессов автора Стивенс Уильям Ричард

5.1. Системные вызовы fork() и ехес() Процесс в Linux (как и в UNIX) — это программа, которая выполняется в отдельном виртуальном адресном пространстве. Когда пользователь регистрируется в системе, под него автоматически создается процесс, в котором выполняется оболочка (shell),


1.5. Действие команд fork, exec и exit на объекты IPC

Из книги Программирование на языке Ruby [Идеология языка, теория и практика применения] автора Фултон Хэл

1.5. Действие команд fork, exec и exit на объекты IPC Нам нужно достичь понимания действия функций fork, exec и _exit на различные формы IPC, которые мы обсуждаем (последняя из перечисленных функций вызывается функцией exit). Информация по этому вопросу сведена в табл. 1.4.Большинство функций


14.1.1. Методы system и exec

Из книги Искусство программирования на языке сценариев командной оболочки автора Купер Мендель


16.1. С помощью команды exec

Из книги Linux программирование в примерах автора Роббинс Арнольд

16.1. С помощью команды exec Команда exec <filename перенаправляет ввод со stdin на файл. С этого момента весь ввод, вместо stdin (обычно это клавиатура), будет производиться из этого файла. Это дает возможность читать содержимое файла, строку за строкой, и анализировать каждую введенную


Пример 16-2. Перенаправление stdout с помощью exec

Из книги Linux и UNIX: программирование в shell. Руководство разработчика. автора Тейнсли Дэвид

Пример 16-2. Перенаправление stdout с помощью exec #!/bin/bash# reassign-stdout.shLOGFILE=logfile.txtexec 6>&1 # Связать дескр. #6 со stdout. # Сохраняя stdout.exec > $LOGFILE # stdout замещается файлом "logfile.txt".# ----------------------------------------------------------- ## Весь вывод от команд, в данном блоке, записывается в файл


9.1.1. Создание процесса: fork()

Из книги UNIX: разработка сетевых приложений автора Стивенс Уильям Ричард

9.1.1. Создание процесса: fork() Первым шагом в запуске новой программы является вызов fork():#include <sys/types.h> /* POSIX */#include <unistd.h>pid_t fork(void);Использование fork() просто. Перед вызовом один процесс, который мы называем родительским, является запущенным. Когда fork() возвращается, имеется


9.1.1.1. После fork() : общие и различные атрибуты

Из книги автора

9.1.1.1. После fork(): общие и различные атрибуты Порожденный процесс «наследует» идентичные копии большого числа атрибутов от родителя. Многие из этих атрибутов специализированы и здесь неуместны. Поэтому следующий список намеренно неполон. Существенны


9.1.4. Запуск новой программы: семейство exec()

Из книги автора

9.1.4. Запуск новой программы: семейство exec() После запуска нового процесса (посредством fork()) следующим шагом является запуск в процессе другой программы. Имеется несколько функций, которые служат различным целям:#include <unistd.h> /* POSIX */int execve(const char *filename, /* Системный вызов */char


9.1.4.4. Атрибуты, наследуемые exec()

Из книги автора

9.1.4.4. Атрибуты, наследуемые exec() Как и в случае с fork(), после вызова программой exec сохраняется ряд атрибутов:• Все открытые файлы и открытые каталоги; см. раздел 4.4.1 «Понятие о дескрипторах файлов» и раздел 3.3.1 «Базовое чтение каталогов». (Сюда не входят файлы, помеченные для


9.4.3.1. Флаг close-on-exec

Из книги автора

9.4.3.1. Флаг close-on-exec После вызова fork() и перед вызовом exec() следует убедиться, что новая программа наследует лишь те открытые файлы, которые ей нужны. Вы не захотите, чтобы порожденный процесс мешался в открытых файлах родителя, если только это так не задумано. С другой стороны,


10.9. Сигналы, передающиеся через fork() и exec()

Из книги автора

10.9. Сигналы, передающиеся через fork() и exec() Когда программа вызывает fork(), ситуация с сигналами в порожденном процессе почти идентична ситуации в родительском процессе. Установленные обработчики остаются на месте, заблокированные сигналы остаются заблокированными и т.д.


2.1.13. Опции -exec и -ok

Из книги автора

2.1.13. Опции -exec и -ok Предположим, вы нашли нужные файлы и хотите выполнить по отношению к ним определенные действия. В этом случае вам понадобится опция -exec (некоторые системы позволяют с помощью опции -exec выполнять только команды ls илиls -l). Многие пользователи применяют


5.8. Команда exec

Из книги автора

5.8. Команда exec Команда exec заменяет текущий интерпретатор shell указанной командой. Обычно она используется для того, чтобы закрыть текущий интерпретатор и запустить другой. Но у нее есть и другое применение. Например, команда видаexec < файлделает указанный файл стандартным


4.7. Функции fork и exec

Из книги автора

4.7. Функции fork и exec Прежде чем рассматривать создание параллельного сервера (что мы сделаем в следующем разделе), необходимо описать функцию Unix fork. Эта функция является единственным способом создания нового процесса в Unix.#include <unistd.h>pid_t fork(void);Возвращает: 0 в дочернем