Программный интерфейс сокетов
Программный интерфейс сокетов
Вы уже познакомились с интерфейсом сокетов при обсуждении реализации межпроцессного взаимодействия в BSD UNIX. Поскольку сетевая поддержка впервые была разработана именно для BSD UNIX, интерфейс сокетов и сегодня является весьма распространенным при создании сетевых приложений. В разделе "Поддержка сети в BSD UNIX" мы вновь вернемся к сокетам, когда будем рассматривать внутреннюю архитектуру сетевой подсистемы в UNIX ветви BSD. Сейчас же рассмотрим простой пример приложения клиент-сервер, который демонстрирует возможности сокетов при обеспечении взаимодействия между удаленными процессами. Несмотря на то что взаимодействие затрагивает передачу данных по сети, приведенная программа мало отличается от примера, рассмотренного в разделе "Межпроцессное взаимодействие в BSD UNIX. Сокеты" главы 3. Логика приложения сохранена — клиент отправляет серверу сообщение, сервер передает его обратно, а клиент, в свою очередь, выводит полученное сообщение на экран. Наиболее существенным отличием является коммуникационный домен сокетов — в данном случае AF_INET. Соответственно изменилась и схема адресации коммуникационного узла. Согласно схеме адресации TCP/IP, коммуникационный узел однозначно идентифицируется двумя значениями: адресом хоста (IP-адрес) и адресом процесса (адрес порта). Это отражает и структура sockaddr_in, которая является конкретным видом общей структуры адреса сокета sockaddr. Структура sockaddr_in имеет следующий вид:
struct sockaddr_in {
short sin_family; Коммуникационный домен — AF_INET
u_short sin_port; Номер порта
struct in_addr sin_addr; IP-адрес хоста
char sin_zero[8];
};
Адрес порта должен быть предварительно оговорен между клиентом и сервером.
В заключение, прежде чем перейти непосредственно к текстам программы, заметим, что интерфейс сокетов также поддерживается и в UNIX System V, наряду с другим программным интерфейсом — TLI, который будет рассмотрен в следующем разделе.
Приведенный пример в качестве транспортного протокола использует TCP. Это значит, что перед передачей прикладных данных клиент должен установить соединение с сервером. Эта схема, приведенная на рис. 6.17, несколько отличается от рассмотренной в разделе "Межпроцессное взаимодействие в BSD UNIX. Сокеты", где передача данных осуществлялась без предварительного установления связи и в данном случае соответствовала бы использованию протокола UDP.
Рис. 6.17. Схема установления связи и передачи данных между клиентом и сервером
В соответствии с этой схемой сервер производит связывание с портом, номер которого предполагается известным для клиентов bind(2), и сообщает о готовности приема запросов listen(2)). При получении запроса он с помощью функции accept(2) создает новый сокет, который и обслуживает обмен данными между клиентом и сервером. Для того чтобы сервер мог продолжать обрабатывать поступающие запросы, он порождает отдельный процесс на каждый поступивший запрос. Дочерний процесс, в свою очередь, принимает сообщения от клиента (recv(2)) и передает их обратно (send(2)).
Клиент не выполняет связывания, поскольку ему безразлично, какой адрес будет иметь его коммуникационный узел. Эту операцию выполняет система, выбирая свободный адрес порта и установленный адрес хоста. Далее клиент направляет запрос на установление соединения (connect(2)), указывая адрес сервера (IP-адрес и номер порта). После установления соединения ("тройное рукопожатие") клиент передает сообщение (send(2)), принимает от сервера ответ recv(2)) и выводит его на экран.
В программе используются несколько функций, которые не рассматривались. Эти функции значительно облегчают жизнь программисту, выполняя, например, такие действия, как трансляцию доменного имени хоста в его IP-адрес (gethostbyname(3N)), приведение в соответствие порядка следования байтов в структурах данных, который может различаться для хоста и сети (htons(3N)), а также преобразование IP-адресов и их составных частей в соответствии с привычной "человеческой" нотацией, например 127.0.0.1 (inet_ntoa(3N)). Мы не будем подробнее останавливаться на этих функциях, предоставляя читателю самостоятельно обратиться к соответствующим разделам электронного справочника man(1).
Ниже приведены тексты программ сервера и клиента.
Сервер
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <stdio.h>
#include <fcntl.h>
#include <netdb.h>
/* Номер порта сервера, известный клиентам */
#define PORTNUM 1500
main(argc, argv)
int argc;
char *argv[];
{
int s, ns;
int pid;
int nport;
struct sockaddr_in serv_addr, clnt_addr;
struct hostent* hp;
char buf[80], hname[80];
/* Преобразуем порядок следования байтов
к сетевому формату */
nport = PORTNUM;
nport = htons((u_short)nport);
/* Создадим сокет, использующий протокол TCP */
if ((s=socket(AF_INET, SOCK_STREAM, 0))==-1) {
perror("Ошибка вызова socket()");
exit(1);
}
/* Зададим адрес коммуникационного узла */
bzero(&serv_addr, sizeof(serv_addr));
serv_addr.sin_family = AF_INET;
serv_addr.sin_addr.s_addr = INADDR_ANY;
serv.addr.sin_port = nport;
/* Свяжем сокет с этим адресом */
if (bind(s, struct sockaddr*)&serv_addr,
sizeof(serv_addr))==-1) {
perror("Ошибка вызова bind()");
exit(1);
}
/* Выведем сообщение с указанием адреса сервера */
fprintf(stderr, "Сервер готов: %s ",
inet_ntoa(serv_addr.sin_addr));
/* Сервер готов принимать запросы
на установление соединения.
Максимальное число запросов, ожидающих обработки – 5.
Как правило, этого числа достаточно, чтобы успеть
выполнить accept(2) и породить дочерний процесс */
if (listen(s, 5)==-1) {
perror("Ошибка вызова listen()");
exit(1);
}
/* Бесконечный цикл получения запросов и их обработки */
while (1) {
int addrlen;
bzero(&clnt_addr, sizeof(clnt_addr));
addrlen = sizeof(clnt_addr);
/* Примем запрос. Новый сокет ns становится
коммуникационным узлом созданного виртуального канала */
if ((ns=accept(s, (struct sockaddr*)&clnt_addr,
&addrlen))==-1) {
perror("Ошибка вызова accept()");
exit(1);
}
/* Выведем информацию о клиенте */
fprintf(stderr, "Клиент = %s ",
inet_ntoa(clnt_addr.sin_addr));
/* Создадим процесс для работы с клиентом */
if ((pid=fork())==-1) {
perror("Ошибка вызова fork()");
exit(1);
}
if (pid==0) {
int nbytes;
int fout;
/* Дочерний процесс: этот сокет нам не нужен. Он
по-прежнему используется для получения запросов */
close(s);
/* Получим сообщение от клиента и передадим его обратно */
while ((nbytes = recv(ns, buf, sizeof(buf), 0)) !=0) {
send(ns, buf, sizeof(buf), 0);
}
close(ns);
exit(0);
}
/* Родительский процесс: этот сокет нам не нужен. Он
используется дочерним процессом для обмена данными */
close(ns);
}
}
Клиент
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <stdio.h>
#include <fcntl.h>
#include <netdb.h>
/* Номер порта, который обслуживается сервером */
#define PORTNUM 1500
main (argc, argv)
char *argv[];
int argc;
{
int s;
int pid;
int i, j;
struct sockaddr_in serv_addr;
struct hostent *hp;
char buf[80]="Hello, World!";
/* В качестве аргумента клиенту передается доменное имя
хоста, на котором запущен сервер. Произведем трансляцию
доменного имени в адрес */
if ((hp = gethostbyname(argv[1])) == 0) {
perror("Ошибка вызова gethostbyname()");
exit(3);
}
bzero(&serv_addr, sizeof(serv_addr));
bcopy(hp->h_addr, &serv_addr.sin_addr, hp->h_length);
serv_addr.sin_family = hp->h_addrtype;
serv_addr.sin_port = htons(PORTNUM);
/* Создадим сокет */
if ((s = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
perror("Ошибка вызова socket!)");
exit(1);
}
fprintf(stderr, "Адрес клиента: %s ",
inet_ntoa(serv_addr.sin_addr));
/* Создадим виртуальный канал */
if (connect (s, (struct sockaddr*)&serv_addr,
sizeof(serv_addr)) == -1) {
perror("Ошибка вызова connect()");
exit(1);
}
/* Отправим серверу сообщение и получим его обратно */
send(s, buf, sizeof(buf), 0);
if (recv(s, buf, sizeof(buf) , 0) < 0) {
perror("Ошибка вызова recv()");
exit(1);
}
/* Выведем полученное сообщение на экран */
printf("Получено от сервера: %s ", buf);
close(s);
printf("Клиент завершил работу ");
}
Данный текст является ознакомительным фрагментом.