Павел Иванов (МГУ) об «оптимизации» бактерий и биоводороде Юрий Ильин

We use cookies. Read the Privacy and Cookie Policy

Павел Иванов (МГУ) об «оптимизации» бактерий и биоводороде

Юрий Ильин

Опубликовано 15 марта 2011 года

Руководитель группы биоинформатики, геномики и системной биологии кафедры биофизики Физического факультета МГУ им. М.В.Ломоносова Павел Иванов рассказал нам об этом проекте.

- Расскажите, пожалуйста, над чем вы работаете.

- Речь идёт о проекте, который направлен на производство биоводорода, точнее, обычного молекулярного водорода бактериальными клетками. Водорода, который потом можно будет сжижать и транспортировать, как это делается в индустрии «водородного топлива».

Оказалось, в мире существуют бактерии, которые способны очень эффективно играть роль продуцентов такого водорода. Но сами по себе эти бактерии, относящиеся к роду Rhodobacter, производят водород в крайне малых количествах. Он бывает им нужен только для того, чтобы избавиться от лишних восстановительных эквивалентов в метаболических путях. Способом такого избавления как раз и служит выработка водорода. А вообще жизнедеятельность этих микроорганизмов с водородом никак не связана.

Благодаря чрезвычайно разнообразному метаболизму даже для бактериального мира они с лёгкостью приспосабливаются к радикальным изменениям в условиях существования, погубить их довольно сложно. Эти бактерии являются фотосинтезирующими клетками, но стоит выключить свет, и они спокойно живут дальше. Им нужен кислород, но они комфортно чувствуют себя и в анаэробных условиях. Другими словами, в этих клетках заложен огромный «биохимический потенциал», и те или иные метаболические пути вступают в игру в зависимости от того, что с этой клеткой происходит.

При таком разнообразии метаболических путей попытки заставить данные клетки производить водород, подбирая внешние условия их существования, не очень конструктивны. Вы меняете внешние условия, а бактерии без труда подстраиваются под них и продолжают «гнуть свою линию».

Вот тут и начинается работа, которая стала достаточно рутинной в современной генетике, или геномике, как её правильнее было бы назвать, — работа, связанная с генной инженерией. Её смысл сводится к выключению отдельных генов, приводящему к отключению отдельных биохимических реакций внутри клетки. Если всё сделано верно, то бактериальной клетке ничего не остаётся, как синтезировать водород. Другими словами, основная идея состоит в отключении максимального числа реакций, которые препятствуют выработке водорода данной клеткой.

Если нам удалось это сделать, то стоит пойти дальше и добавить этой бактерии геномный материал, который ещё больше увеличит скорость производства водорода. Тут есть два пути: либо сделать копии уже существующих генов, которые нужны для производства водорода, либо включить в геном данной бактерии отдельные гены или регуляторные участки из геномов других бактерий.

Оказывается, что и к ним тоже есть два подхода. Один – скорее эмпирический. Мы знаем, что это за бактерии — их изучением занимается десяток научных лабораторий в Америке, Германии, Японии и России. Мы знаем, как устроена биохимия именно этих клеток, да и вообще неплохо представляем себе биохимию микроорганизмов. На уровне наших качественных представлений можно попытаться выполнить необходимые генные манипуляции и посмотреть, что получится.

Другой подход набирает силу в последние пять-семь лет, особенно на Западе. Это скрупулёзное моделирование процессов, происходящих в бактериальной клетке, причём моделирование не только собственно биохимических реакций, но и регуляции, затрагивающей уровень генома. На основании такого моделирования можно попробовать точно предсказать, к чему приведёт включение и выключение конкретных генов, а также увеличение числа их копий и добавление генов из других бактерий. В идеале мы могли бы точно сказать, сколько водорода такие модифицированные клетки (мутанты) будут производить, например, на один грамм сухой массы.

Вот таким моделирование мы и занимаемся в нашей группе биоинформатики, геномики и системной биологии на физическом факультете МГУ. А дорогую инструментальную часть, связанную с генными манипуляциями и созданием мутантных штаммов, выполняют наши коллеги в Университете штата Вайоминг (США).

Мы продуктивно работаем в этом направлении уже года три. Уже созданы мутанты, то есть бактерии рода Rhodobacter с модифицированным геномом, которые производят в три раза больше водорода, чем дикий тип. Согласитесь, троекратное увеличение — это результат, это не десять процентов. И всё же до промышленных объёмов ещё очень далеко. Хотелось бы, чтобы производство водорода этими бактериями выросло хотя бы на порядок, а лучше – ещё больше.

Ещё одна задача: как этим бактериям обеспечить среду существования? Одно дело, когда всё делают в пробирке — но это никому не интересно. Другое — когда производство биоводорода ставят на промышленную основу. Можно ли бактериальные колонии размножить в таких количествах, чтобы производство стало выгодным? Сразу возникает вопрос о том, чем же эти бактерии кормить, потому что кормить их всё-таки надо. К счастью, они могут питаться отходами жизнедеятельности человека — всякими отбросами, органическими отходами. И тогда задача становится перспективной уже и с технологической точки зрения.

- Органический мусор?

- Да. Тоже не всяким, мусор надо подбирать и сортировать, но так бы его просто выкидывали, а тут выясняется, что из него — при определённых опять же условиях — можно сделать водород.

Мы некоторое время занимались проектом по созданию циклической системы: бактерии рода Rhodobacter наряду с ферментирующими бактериями и водорослями образуют замкнутый цикл, на выходе из которого образуется водород. К сожалению, сейчас этот проект приостановлен.

Отдельная проблема — где содержать эти бактерии и как обеспечить их культуральную среду не на уровне пробирки или колбы, а в промышленных масштабах. Тут в игру вступает технология формирования биоплёнок, по-английски называемых биофильмами. Это большие подложки, на которых живёт бактериальная культура — в планарном исполнении, если угодно, на плоскости. В нужных нам условиях эти бактериальные клетки перестают делиться, но к счастью, это не так уж важно: в биоплёнке такая клетка может жить до четырёх месяцев, не делясь. За эти четыре месяца она должна выработать такое количество водорода, что всё это будет вполне оправданно.

Ещё один пока не решённый вопрос — как улавливать производимый биоводород и как его затем транспортировать. Эта часть проекта пока остаётся у нас в тени, потому что, подчеркну ещё раз, наши усилия пока направлены преимущественно на генные манипуляции, на создание мутантов данных бактерий, у которых производство водорода выведено на максимум.

- Вероятно, один из первых вопросов, который возникнет у обывателей, такой: каких побочных явлений можно ожидать, и насколько эти генно-модифицированные бактерии могут быть, скажем, опасны для человека?

- Эти бактерии совершенно не патогенные, ни в каком виде. Поэтому от того, что вы осуществляете какие-то манипуляции с их геномом, плохо или хорошо может быть им, а больше — никому. Это первый момент.

Второй момент заключается в том, что продукты их жизнедеятельности могут быть весьма разнообразны в зависимости от того, в каких внешних условиях они существуют. Однако выделяемые ими вещества представляют собой нетоксичную органику, не представляющую никакой опасности.

- То есть производство получается предельно чистым само по себе?

- Да. Это один из самых чистых видов биотоплива не только по продуктам сгорания (продукт сгорания водорода — это вода), но и по технологии производства. Отходы — те же, как если бы данные бактерии находились в своей естественной среде. Их колонии можно встретить в знаменитом американском заповеднике — Йеллоустоунском национальном парке, где они живут в горячих источниках и ничего не загрязняют.

Нет отходов ещё и потому, что нет какого-то биотехнологического производства — в отличие от того, что имеет место при производстве других видов биотоплива, например, когда надо использовать какие-то растительные культуры, а на выходе остаются продукты их переработки.

Это же обычная бактериальная клетка, которая и так живёт в огромных количествах в различных уголках Земного шара, но при этом она не вредит ничему, никакой экологии.

- По вашим оценкам, через сколько лет бактериальное производство водорода удастся вывести на промышленный масштаб?

- Всегда хочется быть оптимистом. Мы надеемся, что геномную часть мы доделаем года за два, за три. Сейчас всё, что связано с моделированием, в базовом варианте готово. Вышли публикации, которые показывают, что построенная модель работоспособна, она корректно объясняет существующие экспериментальные данные и одновременно выдаёт предсказания, которые можно проверить.

Пока не до конца просчитаны части, связанные с мутантами и с регуляцией на уровне генома. Тем не менее даже в её нынешнем виде модель можно использовать для предсказания мутантов, оптимальных с точки зрения наработки биоводорода. Что пока совсем не сделано на модельном уровне — это анализ последствий встраивания в геном Rhodobacter новых генов. Такое включение — экспериментальный процесс, но вот описать его последствия на уровне количественного моделирования и компьютерного счёта (чтобы понять, какие гены надо встроить и куда, а также на что и как их встраивание повлияет) — это нам ещё предстоит.

С другой стороны, не дожидаясь наших результатов, не дожидаясь, пока все эти численные, математические вещи сработают, наши коллеги уже вовсю делают мутантов, которые, как я уже сказал, имеют в три раза большую скорость производства водорода по сравнению с диким типом, так что мы движемся параллельно.

Кстати говоря, мы работаем со вполне определённым видом бактерий Rhodobacter, которые, по существующим оценкам, являются лучшим объектом для подобного рода исследований и последующего использования. Родственные виды «работают» хуже, потому что у них чуть-чуть иначе устроен метаболизм, нет отдельных биохимических реакций, так что даже если их «оптимизировать», результат будет далёк от теоретического максимума.

Если за два-три года мы доделаем эту лабораторную часть, то ещё года три-четыре уйдёт на то, чтобы научиться делать всё то же самое, но в промышленных масштабах. Биоплёнки уже делаются, но опять же в лаборатории. Предстоит ещё разработать «циклический» вариант, который я упомянул, и научиться с минимальными потерями улавливать производимый водород.

- А наше государство каким-нибудь образом уже выражало своё отношение к этому проекту?

- По большому счёту, нет. В сентябре мы написали один грант — его результаты будут известны довольно скоро; недавно подали заявку на совместный российско-американский грант в области альтернативной энергетики, его результаты будут обнародованы 1 мая этого года. Тем не менее я убеждён, что данное исследование, особенно наше сотрудничество с американской группой, вполне вписывается в инновационные инициативы «сверху», направленные на то, чтобы уйти от сырьевой зависимости российской экономики.

- Учитывая, что высшие чины государства связаны именно с нефтью и газом, не ожидаете ли вы активного сопротивления переходу на биотопливо?

- Вопрос, на мой взгляд, куда более сложный. Дело ведь не только в политике власть предержащих. Дело в нефтяных компаниях. Нефтяные, нефтедобывающие, нефтетранспортирующие и нефтеперерабатывающие предприятия крайне заинтересованы в сохранении status quo и той бизнес-модели, по которой они работают. Понятно, что запасов нефти у нас на 40-45 лет, запасов газа — на 200 лет... Это означает, что ещё 40-45 лет можно будет безбедно жить, производя минимальные инвестиции в принципиально новые проекты, которые ещё могут ничего и не дать, ведь может ничего и не получиться.

Может оказаться, что, когда вы перейдёте от всех этих работ к промышленным масштабам, то либо себестоимость окажется в десять раз выше, чем ожидалось, либо бактерии будут плохо себя чувствовать на огромных биоплёнках, площади которых измеряются отнюдь не сотнями квадратных сантиметров.

Но всё равно надо пытаться. Пытаться создать такого эффективного продуцента биоводорода минимальными средствами, то есть сначала смоделировать, а потом ввязываться в какую-то технологическую работу.

- Потребуются ли какие-то специфические промышленные мощности? Что-либо технологически совершенно не освоенное в России?

- Первое, что потребуется, — это подготовка отходов, которые надо теперь не выкидывать, а селектировать и аккумулировать для последующего использования. Их надо будет как-то собирать. То есть либо разворачивать производство рядом с источниками промышленных отходов, либо учиться их собирать и транспортировать. Тут надо понять, что дороже — перевозить субстрат для этих бактерий или затем транспортировать водород. Это первый момент.

Второй — это, конечно, технология улавливания водорода. Это самый обычный водород H2, который в ничтожных количествах присутствует в атмосфере. Нужна технология улавливания с минимальными потерями. Чтобы не было как с нефтью, меньше половины которой мы выкачиваем из пластов, а затем обнаруживаем, что в заброшенных пластах снова полно нефти, и её можно снова качать.

Чтобы такого не происходило, возможно, потребуются какие-то новые технологии. Во всяком случае, я ничего не знаю о готовых технологиях улавливания биоводорода в России. И я почти уверен, что у нас нет правильных технологий, если потребуется эффективно селектировать и транспортировать отходы. Опять-таки надо считать экономические модели — с прямыми затратами и с косвенными, связанными с той же экологией, а этого вообще никто не умеет оценивать.

Допустим, мы сделаем так, что два процента энергетики в России станет водородной, и, допустим, это потребует определенных инвестиций. Как быстро они окупятся? При этом в расчёт окупаемости надо заложить, например, некоторое улучшение экологической обстановки в городах. Как следствие — уменьшение заболеваемости раком лёгких на несколько процентов, а значит, уменьшение страховых выплат и уменьшение затрат государства и частных компаний на лечение этих больных. Другими словами, тут очень много вещей, которые не так-то просто подсчитать. Может, окажется, что в итоге биоводород дешевле.

По инвестиционным программам, которые связаны с энергетикой, биоводород – безусловно, затратная вещь, особенно на стадии проектирования и развёртывания промышленного производства. А вот по медицинским — наоборот, потому что люди будут меньше болеть. Наверняка уменьшится число заболеваний дыхательных путей, потому что воздух станет чище. К сожалению, в России нет практики оценивания окупаемости инвестиций в инновационные проекты с подобных комплексных позиций, такие вещи у нас никто не считает. Никто не понимает, как мне кажется, насколько уменьшение загрязнённости воздуха в городах на два или три процента снизит общие годовые расходы на медицинское обслуживание — неважно, из каких источников. А без этого оценивать экономическую целесообразность подобных проектов совершенно бессмысленно.

К оглавлению