ГЛABA 2  Архитектура системы

We use cookies. Read the Privacy and Cookie Policy

ГЛABA 2  Архитектура системы

Теперь, познакомившись с необходимыми терминами, понятиями и инструментами, мы можем рассмотреть задачи, которые ставились при разработке операционной системы Microsoft Windows. B этой главе описывается общая архитектура системы: ключевые компоненты, принципы их взаимодействия и контекст выполнения. Чтобы получить базовое представление о внутреннем устройстве Windows, давайте сначала обсудим требования и цели, обусловившие структуру и спецификацию этой системы.

Требования и цели проекта

Характеристики Windows NT в 1989 году определялись следующими требованиями. Операционная система должна:

быть истинно 32-разрядной, реентерабельной, поддерживать вытесняющую многозадачность и работу с виртуальной памятью;

работать на разных аппаратных платформах;

хорошо масштабироваться в системах с симметричной мультипроцессорной обработкой;

быть распределенной вычислительной платформой, способной выступать в роли как клиента сети, так и сервера;

поддерживать большинство существующих 16-разрядных приложений

MS-DOS и Microsoft Windows 3.1; отвечать требованиям правительства к соответствию POSIX 1003.1;

отвечать требованиям правительства и промышленности к безопасности операционных систем;

обеспечивать простоту адаптации к глобальному рынку за счет поддержки Unicode.

Для создания системы, соответствующей предъявленным требованиям, нужно было принять тысячи решений. Поэтому перед командой разработчиков Windows NT на начальном этапе проекта были поставлены следующие цели.

• Расширяемость Код должен быть написан так, чтобы системы можно было легко наращивать и модифицировать по мере изменения потребностей рынка.

• Переносимость Система должна работать на разных аппаратных архитектурах и обладать способностью к сравнительно легкому переносу на новые аппаратные архитектуры, если на рынке возникнет такая потребность.

• Отказоустойчивость и надежность Система должна быть защищенной как от внутренних сбоев, так и от внешних деструктивных действий. У приложений не должно быть возможности нарушить работу операционной системы или других приложений.

• Совместимость Хотя Windows NT должна расширить существующую технологию, ее пользовательский интерфейс и API должны быть совместимы с предыдущими версиями Windows и MS-DOS. Она также должна уметь взаимодействовать с другими системами вроде UNIX, OS/2 и NetWare.

• Производительность C учетом ограничений, налагаемых поставленными целями, система должна быть максимально быстрой и отзывчивой независимо от аппаратной платформы.

По мере изучения деталей внутренней структуры Windows вы увидите, насколько успешно были реализованы все эти требования и цели. Ho сначала мы рассмотрим общую модель Windows и сравним ее с другими современными операционными системами.

Модель операционной системы

B большинстве многопользовательских операционных систем приложения отделены от собственно операционной системы: код ее ядра выполняется в привилегированном режиме процессора (называемом режимом ядра), который обеспечивает доступ к системным данным и оборудованию. Код приложений выполняется в непривилегированном режиме процессора (называемом пользовательским) с неполным набором интерфейсов, ограниченным доступом к системным данным и без прямого доступа к оборудованию. Когда программа пользовательского режима вызывает системный сервис, процессор перехватывает вызов и переключает вызывающий поток в режим ядра. По окончании работы системного сервиса операционная система переключает контекст потока обратно в пользовательский режим и продолжает его выполнение.

Windows, как и большинство UNIX-систем, является монолитной операционной системой — в том смысле, что большая часть ее кода и драйверов использует одно и то же пространство защищенной памяти режима ядра. Это значит, что любой компонент операционной системы или драйвер устройства потенциально способен повредить данные, используемые другими компонентами операционной системы.

Основана ли Windows на микроядре?

Хотя некоторые объявляют ее таковой, Windows не является операционной системой на основе микроядра в классическом понимании этого термина. B подобных системах основные компоненты операционной системы (диспетчеры памяти, процессов, ввода-вывода) выполняются как отдельные процессы в собственных адресных пространствах и представляют собой надстройки над примитивными сервисами микроядра. Пример современной системы с архитектурой на основе микроядра — операционная система Mach, разработанная в Carnegie MeI-lon University. Она реализует крошечное ядро, которое включает сервисы планирования потоков, передачи сообщений, виртуальной памяти и драйверов устройств. Все остальное, в том числе разнообразные API, файловые системы и поддержка сетей, работает в пользовательском режиме. Однако в коммерческих реализациях на основе микроядра Mach код файловой системы, поддержки сетей и управления памятью выполняется в режиме ядра. Причина проста: системы, построенные строго по принципу микроядра, непрактичны с коммерческой точки зрения из-за слишком низкой эффективности.

Означает ли тот факт, что большая часть Windows работает в режиме ядра, ее меньшую надежность в сравнении с операционными системами на основе микроядра? Вовсе нет. Рассмотрим следующий сценарий. Допустим, в коде файловой системы имеется ошибка, которая время от времени приводит к краху системы. Ошибка в коде режима ядра (например, в диспетчере памяти или файловой системы) скорее всего вызовет полный крах традиционной операционной системы. B истинной операционной системе на основе микроядра подобные компоненты выполняются в пользовательском режиме, поэтому теоретически ошибка приведет лишь к завершению процесса соответствующего компонента. Ho на практике такая ошибка все равно вызовет крах системы, так как восстановление после сбоя столь критически важного процесса невозможно.

Все эти компоненты операционной системы, конечно, полностью защищены от сбойных приложений, поскольку такие программы не имеют прямого доступа к коду и данным привилегированной части операционной системы (хотя и способны вызывать сервисы ядра). Эта защита — одна из причин, по которым Windows заслужила репутацию отказоустойчивой и стабильной операционной системы в качестве сервера приложений и платформы рабочих станций, обеспечивающей быстродействие основных системных сервисов вроде поддержки виртуальной памяти, файлового ввода-вывода, работы с сетями и доступа к общим файлам и принтерам.

Компоненты Windows режима ядра также построены на принципах объектно-ориентированного программирования (ООП). Так, для получения информации о каком-либо компоненте они, как правило, не обращаются к его структурам данных. Вместо этого для передачи параметров, доступа к структурам данных и их изменения используются формальные интерфейсы.

Однако, несмотря на широкое использование объектов, представляющих разделяемые системные ресурсы, Windows не является объектно-ориентированной системой в строгом понимании этого термина. Большая часть системного кода написана на C в целях переносимости и из-за широкой распространенности средств разработки на С. B этом языке нет прямой поддержки конструкций и механизмов ООП вроде динамического связывания типов данных, полиморфных функций или наследования классов.

Обзор архитектуры

Теперь обратимся к ключевым компонентам системы, составляющим ее архитектуру. Упрощенная версия этой архитектуры показана на рис. 2–1. Учтите, что упрощенная схема не отражает всех деталей архитектуры (например, здесь не показаны уровни сетевых компонентов и различных типов драйверов устройств).

Рис. 2–1. Упрощенная схема архитектуры Windows

Ha рис. 2–1 прежде всего обратите внимание на линию, разделяющую те части Windows, которые выполняются в режиме ядра и в пользовательском режиме. Прямоугольники над этой линией соответствуют процессам пользовательского режима, а компоненты под ней — сервисам режима ядра. Как говорилось в главе 1, потоки пользовательского режима выполняются в защищенных адресных пространствах процессов (хотя при выполнении в режиме ядра они получают доступ к системному пространству). Таким образом, процессы поддержки системы, сервисов, приложений и подсистем окружения имеют свое адресное пространство.

Существует четыре типа пользовательских процессов:

фиксированные процессы поддержки системы (system support processes) — например, процесс обработки входа в систему и диспетчер сеансов, не являющиеся сервисами Windows (т. е. не запускаемые диспетчером управления сервисами);

процессы сервисов (service processes) — носители Windows-сервисов вроде Task Scheduler и Spooler. Многие серверные приложения Windows, например Microsoft SQL Server и Microsoft Exchange Server, тоже включают компоненты, выполняемые как сервисы;

пользовательские приложения (user applications) — бывают шести типов: для 32-разрядной Windows, 64-разрядной Windows, 16-разрядной Windows 3.1, 16-разрядной MS-DOS, 32-разрядной POSIX и 32-разрядной OS/2;

подсистемы окружения (environment subsystems) — реализованы как часть поддержки среды операционной системы, предоставляемой пользователям и программистам. Изначально Windows NT поставлялась с тремя подсистемами окружения: Windows, POSIX и OS/2. Последняя была изъята в Windows 2000. Что касается Windows XP, то в ней исходно поставляется только подсистема Windows — улучшенная подсистема POSIX доступна как часть бесплатного продукта Services for UNIX. Обратите внимание на прямоугольник «DLL подсистем», расположенный на рис. 2–1 под прямоугольниками «процессы сервисов» и «пользовательские приложения». B Windows пользовательские приложения не могут вызывать родные сервисы операционной системы напрямую, вместо этого они работают с одной или несколькими DLL подсистем. Их назначение заключается в трансляции документированных функций в соответствующие внутренние (и обычно недокументированные) вызовы системных сервисов Windows. Трансляция может осуществляться как с помощью сообщения, посылаемого процессу подсистемы окружения, обслуживающему пользовательское приложение, так и без него.

Windows включает следующие компоненты режима ядра.

Исполнительная система (executive) Windows, содержащая базовые сервисы операционной системы, которые обеспечивают управление памятью, процессами и потоками, защиту, ввод-вывод и взаимодействие между процессами.

Ядро (kernel) Windows, содержащее низкоуровневые функции операционной системы, которые поддерживают, например, планирование потоков, диспетчеризацию прерываний и исключений, а также синхронизацию при использовании нескольких процессоров. Оно также предоставляет набор процедур и базовых объектов, применяемых исполнительной системой для реализации структур более высокого уровня.

Драйверы устройств (device drivers), в состав которых входят драйверы аппаратных устройств, транслирующие пользовательские вызовы функций ввода-вывода в запросы, специфичные для конкретного устройства, а также сетевые драйверы и драйверы файловых систем.

Уровень абстрагирования от оборудования (hardware abstraction layer, HAL), изолирующий ядро, драйверы и исполнительную систему Windows от специфики оборудования на данной аппаратной платформе (например, от различий между материнскими платами).

Подсистема поддержки окон и графики (windowing and graphics system), реализующая функции графического пользовательского интерфейса (GUI), более известные как Windows-функции модулей USER и GDL Эти функции обеспечивают поддержку окон, элементов управления пользовательского интерфейса и отрисовку графики.

B таблице 2–1 перечислены имена файлов основных компонентов Windows. (Вы должны знать их, потому что в дальнейшем мы будем ссылаться на некоторые системные файлы по именам.) Каждый из этих компонентов подробно рассматривается в этой и последующих главах.

Прежде чем детально рассматривать эти компоненты, давайте проясним, как достигается переносимость Windows между различными аппаратными платформами.

Переносимость

Windows рассчитана на разные аппаратные платформы, включая как CISC-системы Intel, так и RISC-системы. Windows NT первого выпуска поддерживала архитектуры x86 и MIPS. Спустя некоторое время была добавлена поддержка Alpha AXP производства DEC (DEC была приобретена Compaq, а позднее произошло слияние компаний Compaq и Hewlett Packard). (Хотя Alpha AXP был 64-разрядным процессором, Windows NT работала с ним в 32-разрядном режиме. B ходе разработки Windows 2000 была создана ее 64-разрядная версия специально под Alpha AXP, но в свет она так и не вышла.) B Windows NT 3.51 ввели поддержку четвертой процессорной архитектуры — Motorola PowerPC. B связи с изменениями на рынке необходимость в поддержке MIPS и PowerPC практически отпала еще до начала разработки Windows 2000. Позднее Compaq отозвала поддержку архитектуры Alpha AXP, и в Windows 2000 осталась поддержка лишь архитектуры x86. B самые последние выпуски — Windows XP и Windows Server 2003 — добавлена поддержка трех семейств 64-разрядных процессоров: Intel Itanium IA-64, AMD x86-64 и Intel 64-bit Extension Technology (EM64T) для x86 (эта архитектура совместима с архитектурой AMD x86-64, хотя есть небольшие различия в поддерживаемых командах). Последние два семейства процессоров называются системами с 64-разрядными расширениями и в этой книге обозначаются как x64. (Как 32-разрядные приложения выполняются в 64-разрядной Windows, объясняется в главе 3.)

Переносимость Windows между системами с различной аппаратной архитектурой и платформами достигается главным образом двумя способами.

Windows имеет многоуровневую структуру. Специфичные для архитектуры процессора или платформы низкоуровневые части системы вынесены в отдельные модули. Благодаря этому высокоуровневая часть системы не зависит от специфики архитектур и аппаратных платформ. Ключевые компоненты, обеспечивающие переносимость операционной системы, — ядро (содержится в файле Ntoskrnl.exe) и уровень абстрагирования от оборудования (HAL) (содержится в файле Hal.dll). Функции, специфичные для конкретной архитектуры (переключение контекста потоков, диспетчеризация ловушек и др.), реализованы в ядре. Функции, которые могут отличаться на компьютерах с одинаковой архитектурой (например, в системах с разными материнскими платами), реализованы в HAL. Еще один компонент, содержащий большую долю кода, специфичного для конкретной архитектуры, — диспетчер памяти (memory manager), но если рассматривать систему в целом, такого кода все равно немного.

Подавляющее большинство компонентов Windows написано на C и лишь часть из них — на C++. Язык ассемблера применяли только при создании частей системы, напрямую взаимодействующих с системным оборудованием (например, при написании обработчика ловушек прерываний) или требующих исключительного быстродействия (скажем, при переключении контекста). Ассемблерный код имеется не только в ядре и HAL, но и в составе некоторых других частей операционной системы: процедур, реализующих взаимоблокировку, механизма вызова локальных процедур (LPC), части подсистемы Windows, выполняемой в режиме ядра, и даже в некоторых библиотеках пользовательского режима (например, в коде запуска процессов в Ntdll.dll — системной библиотеке, о которой будет рассказано в этой главе несколько позже).

Симметричная многопроцессорная обработка

Многозадачность (multitasking) — механизм операционной системы, позволяющий использовать один процессор для выполнения нескольких потоков. Однако истинно одновременное выполнение, например, двух потоков возможно, только если на компьютере установлено два процессора. При многозадачности система лишь создает видимость одновременного выполнения множества потоков, тогда как многопроцессорная система действительно выполняет сразу несколько потоков — по одному на каждом процессоре.

Как уже говорилось в начале этой главы, одной из ключевых целей разработки Windows была поддержка многопроцессорных компьютерных систем. Windows является операционной системой, поддерживающей симметричную многопроцессорную обработку (symmetric multiprocessing, SMP). B этой модели нет главного процессора; операционная система, как и пользовательские потоки, может выполняться на любом процессоре. Кроме того, все процессоры используют одну итуже память. При асимметричной многопроцессорной обработке (asymmetric multiprocessing, ASMP) система, напротив, выбирает один из процессоров для выполнения кода ядра операционной системы, а другие процессоры выполняют только пользовательский код. Различия между этими двумя моделями показаны на рис. 2–2.

Windows XP и Windows Server 2003 поддерживают два новых типа многопроцессорных систем: логические процессоры (hyperthreading) и NUMA (Non-Uniform Memory Architecture). Об этом кратко рассказывается в абзаце ниже. (Полное описание поддержки планирования потоков для таких систем см. в разделе по планированию потоков в главе 6.)

Логические процессоры — это технология, созданная Intel; благодаря ей на одном физическом процессоре может быть несколько логических. Каждый логический процессор имеет свое состояние, но исполняющее ядро (execution engine) и набортный кэш (onboard cache) являются общими. Это позволяет одному из логических процессоров продолжать работу, пока другой логический процессор занят (например, обработкой прерывания, которая не дает потокам выполняться на этом логическом процессоре). Алгоритмы планирования в Windows XP были оптимизированы под компьютеры с такими процессорами.

B NUMA-системах процессоры группируются в блоки, называемые узлами (nodes). B каждом узле имеются свои процессоры и память, и он соединяется с остальными узлами специальной шиной. Windows в NUMA-систе-ме по-прежнему работает как SMP-система, в которой все процессоры имеют доступ ко всей памяти, — просто доступ к памяти, локальной для узла, осуществляется быстрее, чем к памяти в других узлах. Система стремится повысить производительность, выделяя потокам время на процессорах, которые находятся в том же узле, что и используемая память. Она также пытается выделять память в пределах узла, но при необходимости выделяет память и из других узлов.

Хотя Windows изначально разрабатывалась для поддержки до 32 процессоров, многопроцессорной модели не свойственны никакие внутренние особенности, которые ограничивали бы число используемых процессоров до 32. Просто это число легко представить битовой маской с помощью машинного 32-разрядного типа данных. И действительно, 64-разрядные версии Windows поддерживают до 64 процессоров, потому что размер слова на 64-разрядных процессорах равен 64 битам.

Реальное число поддерживаемых процессоров зависит от конкретного выпуска Windows (см. таблицы 2–3 и 2–4). Это число хранится в параметре реестра HKLMSYSTEMCurrentControlSetControlSessionManagerLicensed-Processors. Учтите, что модификация этого параметра считается нарушением условий лицензионного соглашения на программное обеспечение, да и для увеличения числа поддерживаемых процессоров требуется нечто большее, чем простое изменение данного параметра.)

Для большей производительности ядро и HAL имеют одно- и многопроцессорную версии. B случае Windows 2000 это относится к шести ключевым системным файлам (см. примечание ниже), а в 32-разрядных Windows XP и Windows Server 2003 — только к трем (см. таблицу 2–2). B 64-разрядных системах Windows ядра PAE нет, поэтому одно- и многопроцессорные системы отличаются лишь ядром и HAL.

Соответствующие файлы выбираются и копируются в локальный каталог WindowsSystem32 на этапе установки. Чтобы определить, какие файлы были скопированы, см. файл WindowsRepairSetup.log, где перечисляются все файлы, копировавшиеся на локальный системный диск, и каталоги на дистрибутивном носителе, откуда они были взяты.

ПРИМЕЧАНИЕ B папке I386UNIPROC в дистрибутиве Windows 2000 находится файл Winsrv.dll. Хотя он помещен в папку UNIPROC, название которой указывает на однопроцессорную версию, на самом деле для одно- и многопроцессорных систем существует только одна версия этого образа.

ЭКСПЕРИМЕНТ: поиск файлов поддержки многопроцессорных систем в Windows 2000

Вы можете убедиться в том, что для многопроцессорной 32-разрядной системы Windows 2000 используются другие файлы, просмотрев сведения о драйверах для Computer (Компьютер) в Device Manager (Диспетчер устройств).

1. Откройте окно свойств системы, дважды щелкнув System (Система) в окне Control Panel (Панель управления) или щелкнув правой кнопкой мыши My Computer (Мой компьютер) на рабочем столе и выбрав из контекстного меню команду Properties (Свойства).

2. Перейдите на вкладку Hardware (Оборудование).

3. Щелкните кнопку Device Manager (Диспетчер устройств).

4. Раскройте объект Computer (Компьютер).

5. Дважды щелкните дочерний узел объекта Computer.

6. Откройте вкладку Driver (Драйвер).

7. Щелкните кнопку Driver Details (Сведения о драйверах).

B многопроцессорной системе вы должны увидеть диалоговое окно, показанное ниже.

Специальные версии этих ключевых системных файлов для однопроцессорных систем созданы для максимального повышения производительности. Синхронизация работы нескольких процессоров — задача принципиально более сложная, и благодаря «однопроцессорным» версиям системных файлов устраняются издержки этой синхронизации, которая в однопроцессорных системах (а они составляют подавляющее большинство систем под управлением Windows) не нужна.

Интересно, что «однопроцессорная» и «многопроцессорная» версии Ntoskrnl создаются за счет условной компиляции одного и того же исходного кода, а «однопроцессорные» версии Ntdll.dll и Kernel32.dll для Windows 2000 требуют замены машинных х86-команд LOCK и UNLOCK, используемых для синхронизации множества потоков, командой NOP (которая ничего не делает).

Остальные системные файлы Windows (включая все утилиты, библиотеки и драйверы устройств) одинаковы как в многопроцессорных, так и в однопроцессорных системах. При разработке нового программного обеспечения — Windows-приложения или драйвера устройства — вы должны учитывать этот подход и тестировать свое программное обеспечение как в одно-, так и в многопроцессорных системах.

ЭКСПЕРИМЕНТ: определение текущей версии Ntoskrnl

B Windows 2000 и выше нет утилиты, показывающей, с какой версией Ntoskrnl вы работаете. Однако при каждой загрузке в журнале системы регистрируется, какая версия ядра запускается — одно- или многопроцессорная, отладочная или конечная (см. следующую иллюстрацию). Выберите из меню Start (Пуск) команду Programs (Программы), затем Administrative Tools (Администрирование) и Event Viewer (Просмотр событий). Далее выберите System Log (Журнал системы) и дважды щелкните запись с кодом события 6009 — она создается при загрузке системы.

Эта запись не содержит сведений о том, загружена ли РАЕ-версия образа ядра, поддерживающая более 4 Гб физической памяти (Ntkrnlpa.exe). Однако вы можете узнать это, проверив значение параметра SystemStartOptions в разделе реестра HKLMSYSTEMCurrent-ControlSetControl. Кроме того, при загрузке РАЕ-версии ядра параметру PhysicalAddressExtension в разделе реестра HKLMSYSTEMCurrent-ControlSetControlSession ManagerMemory Management присваивается значение, равное 1.

Есть и другой способ определить, установлена ли многопроцессорная версия Ntoskrnl (или Ntkrnlpa): запустите Windows Explorer (Проводник), в каталоге WindowsSystem32 щелкните правой кнопкой мыши файл Ntoskrnl.exe и выберите из контекстного меню команду Pro-

perties (Свойства). Перейдите на вкладку Version(Версия) и выберите свойство Original Filename (Исходное имя файла). Если вы работаете с многопроцессорной версией, то увидите диалоговое окно, показанное на предыдущей странице.

Наконец, просмотрев файл WindowsRepairSetup.log, можно точно выяснить, какие файлы ядра и HAL были выбраны при установке.

Масштабируемость

Масштабируемость (scalability) — одна из ключевых целей многопроцессорных систем. Для корректного выполнения в SMP-системах операционная система должна строго соответствовать определенным требованиям. Решить проблемы конкуренции за ресурсы и другие вопросы в многопроцессорных системах сложнее, чем в однопроцессорных, и это нужно учитывать при разработке системы. Некоторые особенности Windows оказались решающими для ее успеха как многопроцессорной операционной системы:

способность выполнять код операционной системы на любом доступном процессоре и на нескольких процессорах одновременно;

несколько потоков одного процесса можно параллельно выполнять на разных процессорах;

тонкая синхронизация внутри ядра (спин-блокировки, спин-блокировки с очередями и др.; см. главу 3), драйверов устройств и серверных процессов позволяет выполнять больше компонентов на нескольких процессорах одновременно;

механизмы вроде портов завершения ввода-вывода (см. главу 9), облегчающие эффективную реализацию многопоточных серверных процессов, хорошо масштабируемых в многопроцессорных системах. Масштабируемость ядра Windows со временем улучшалась. Например, в Windows Server 2003 имеются очереди планирования, индивидуальные для каждого процессора, что дает возможность планировать потоки параллельно на нескольких машинах. O планировании потоков в многопроцессорных системах см. главу 6, а о синхронизации в таких системах — главу 3.

Различия между клиентскими и серверными версиями

Windows поставляется в клиентских и серверных версиях. B Windows 2000 клиентская версия называется Windows 2000 Professional. Существует также три серверных версии Windows 2000: Windows 2000 Server, Advanced Server и Datacenter Server.

У Windows XP шесть клиентских версий: Windows XP Home Edition, Windows XP Professional, Windows XP Starter Edition, Windows XP Tablet PC Edition, Windows XP Media Center Edition и Windows XP Embedded. Последние три являются надмножествами Windows XP Professional и в книге детально не рассматриваются, так как все они построены на том же базовом коде, что и Windows XP Professional.

Windows Server 2003 выпускается в шести разновидностях: Windows Server 2003 Web Edition, Standard Edition, Small Business Server, Storage Server, Enterprise Edition и Datacenter Edition.

Эти версии различаются по следующим параметрам:

числу поддерживаемых процессоров;

объему поддерживаемой физической памяти;

возможному количеству одновременных сетевых соединений (например, в клиентской версии допускается максимум 10 одновременных соединений со службой доступа к общим файлам и принтерам);

наличием в выпусках Server сервисов, не входящих в Professional (например, служб каталогов, поддержкой кластеризации и многопользовательской службы терминала).

Эти различия для Windows 2000 суммируются в таблице 2–3. Ta же информация, но применительно к Windows XP и Windows Server 2003 дана в таблице 2–4.

Хотя существует несколько клиентских и серверных выпусков операционной системы Windows, у них общий набор базовых системных файлов, в том числе: ядро, Ntoskrnl.exe (а также версия РАЕ, Ntkrnlpa.exe), библиотеки HAL, драйверы, основные системные утилиты и DLL. Эти файлы идентичны для всех выпусков Windows 2000.

ПРИМЕЧАНИЕ Windows XP была первым клиентским выпуском кодовой базы Windows NT, который поставляется без соответствующих серверных версий. Вместо этого разработки продолжались, и примерно год спустя после выхода Windows XP была выпущена Windows Server 2003. Таким образом, базовые системные файлы Windows XP и Windows Server 2003 не идентичны. Однако они не столь значимы (и во многих случаях компоненты не изменялись).

Итак, если образ ядра для Windows 2000 Professional и Windows 2000 Server одинаков (и сходен для Windows XP и Windows Server 2003), то как же система определяет, какой именно выпуск загружается? Для этого она проверяет значения параметров ProductType и ProductSuite в разделе реестра HKLMSYSTEMCurrentControlSetControlProductOptions. Параметр ProductType используется, чтобы отличить клиентскую систему от серверной (любого выпуска). Список допустимых значений этого параметра приведен в таблице 2–5. Результат проверки помещается в глобальную системную переменную MmProductType, значение которой может быть запрошено драйвером устройства через функцию MmIsTbisAnNtAsSystem режима ядра, описанную в документации Windows DDK.

Другой параметр, ProductSuite, позволяет различать серверные версии Windows (Standard, Enterprise, Datacenter Server и др.), а также Windows XP Home от Windows XP Professional. Для проверки текущего выпуска Windows пользовательские программы вызывают Windows-функцию VerifyVersionInfo, описанную в Platform SDK. Драйверы могут вызвать функцию RtlGetVersion режима ядра, документированную в Windows DDK.

Итак, если базовые файлы в целом одинаковы для клиентских и серверных версий, то чем же отличается их функционирование? Серверные системы оптимизированы для работы в качестве высокопроизводительных серверов приложений, а клиентские, несмотря на поддержку серверных возможностей, — для персональных систем. Так, некоторые решения по выделению ресурсов (например, о числе и размере системных пулов памяти, количестве внутрисистемных рабочих потоков и размере системного кэша данных) при загрузке принимаются по-разному, в зависимости от типа продукта. Политика принятия таких решений, как обслуживание диспетчером памяти запросов системы и процессов на выделение памяти, у серверной и клиентской версий тоже различается. B равной мере это относится и к особенностям планирования потоков по умолчанию (детали см. в главе 6). Существенные отличия в функционировании этих двух продуктов будут отмечены в соответствующих главах. Любые материалы в нашей книге, если явно не указано иное, относятся к обеим версиям — клиентской и серверной.

Проверочный выпуск

Специальная отладочная версия Windows 2000 Professional, Windows XP Professional или Windows Server 2003 называется проверочным выпуском (checked build). Она доступна только подписчикам MSDN уровня Professional (или выше). Проверочный выпуск представляет собой перекомпилированный исходный код Windows, для которого флаг «DBG» (заставляющий включать код отладки и трассировки этапа компиляции) был установлен как TRUE. Кроме того, чтобы облегчить восприятие машинного кода, отключается обработка двоичных файлов, при которой структура кода оптимизируется для большего быстродействия (см. раздел «Performance-Optimized Code» в справочном файле Debugging Tools).

Проверочный выпуск предназначен главным образом разработчикам драйверов устройств, поскольку эта версия выполняет более строгую проверку ошибок при вызове функций режима ядра драйверами устройств или другим системным кодом. Например, если драйвер (или какой-то иной код режима ядра) неверно вызывает системную функцию, контролирующую передаваемые параметры, то при обнаружении этой проблемы система останавливается, предотвращая повреждение структур данных и возможный крах.

ЭКСПЕРИМЕНТ: определяем, является ли данная система проверочным выпуском

Встроенной утилиты, которая позволяла бы увидеть, с каким выпуском вы имеете дело — проверочным или готовым, нет. Однако эта информация доступна через свойство «Debug» WMI-класса Windows Management Instrumentation) Win32_OperatingSystem. Следующий сценарий на Visual Basic отображает содержимое этого свойства:

Значительная часть дополнительного кода в собранных таким образом двоичных файлах является результатом работы макроса ASSERT, определенного в заголовочном файле Ntddk.h, который входит в состав DDK. Этот макрос проверяет некое условие (например, правильность структуры данных или параметра) и, если значение выражения получается равным FALSE, вызывает функцию RtlAssert режима ядра, которая в свою очередь обращается KDbgPrint, передающей текст отладочного сообщения в буфер отладочных сообщений (debug message buffer). Если отладчик ядра подключен, это сообщение выводится на экран, а за ним автоматически появляется запрос к пользователю, какое действие следует предпринять (игнорировать, завершить процесс или поток и т. д.). Если система загружена без отладчика ядра (в отсутствие ключа /DEBUG в файле Boot.ini) и этот отладчик сейчас не подключен, неудачный тест ASSERT вызовет крах системы. Список тестов

ASSERT, выполняемых некоторыми вспомогательными процедурами ядра, см. в разделе «Checked Build ASSERTs» документации Windows DDK.

ПРИМЕЧАНИЕ Сравнив файл Ntoskrnl.exe с Ntkrnlmp.exe или Ntkrnlpa. exe с Ntkrpamp.exe в проверочной версии системы, вы убедитесь, что они идентичны и являются «многопроцессорными» версиями соответствующих файлов. Иначе говоря, в проверочной версии системы нет отладочных вариантов файлов для однопроцессорных систем.

Проверочный выпуск также полезен системным администраторам, так как в нем можно включить детальную трассировку для определенных компонентов. (Подробные инструкции см. в статье 3H743 «HOWTO: Enable Verbose Debug Tracing in Various Drivers and Subsystems» в Microsoft Knowledge Base.) Вывод такой трассировки посылается в буфер отладочных сообщений с помощью функции DbgPrint, о которой мы уже упоминали. Для просмотра отладочных сообщений к целевой системе можно подключить отладчик ядра (что потребует загрузки целевой системы в отладочном режиме), использовать команду !dbgprint в процессе локальной отладки ядра или применить утилиту Dbgview.exe с сайта wwwsysinternals.com.

Для использования возможностей отладочной версии операционной системы необязательно устанавливать весь проверочный выпуск. Можно просто скопировать проверочную версию образа ядра (Ntoskrnl.exe) и соответствующий HAL (Hal.dll) в обычную систему. Преимущество этого подхода в том, что он позволяет тщательно протестировать драйверы устройств и другой код ядра, не устанавливая медленнее работающие версии всех компонентов системы. O том, как это сделать, см. раздел «Installing Just the Checked Operating System and HAL» в документации Windows DDK. Поскольку Microsoft не поставляет проверочный выпуск Windows 2000 Server, вы можете применить этот способ и получить проверочную версию ядра в системе Windows 2000 Server.

Наконец, проверочная версия пригодится и для тестирования кода пользовательского режима, но только в том смысле, что в проверочной версии системы устанавливаются другие интервалы ожидания (тайминги). (Это связано с тем, что в ядре выполняются дополнительные проверки, а сами компоненты компилируются без оптимизации.) B таких условиях часто проявляются ошибки, связанные с синхронизацией нескольких потоков приложения.

Ключевые компоненты системы

Теперь, ознакомившись с высокоуровневой архитектурой Windows, копнем поглубже и рассмотрим роль каждого ключевого компонента системы. Ha рис. 2–3 отражена более подробная схема системной архитектуры Windows. Заметьте, что на ней все равно не показаны некоторые компоненты (в частности, компоненты сетевой поддержки, о которых пойдет речь в главе 13).

Основные элементы этой схемы детально описываются в последующих главах. B главе 3 рассказывается об основных механизмах управления,

используемых системой (в том числе о диспетчере объектов, прерываниях и т. п.), в главе 5 — о процессах запуска и завершения Windows, а в главе 4 — о таких механизмах управления, как реестр, процессы сервисов и Windows Management Instrumentation (WMI). B остальных главах не менее подробно поясняется внутреннее устройство и функционирование ключевых элементов — процессов, потоков, подсистемы управления памятью, защиты, диспетчера ввода-вывода, диспетчера кэша, файловой системы NTFS, сетевой поддержки и др.

Рис. 2–3 Подсистемы окружения и их DLL:

Как показано на рис. 2–3, в Windows имеется три подсистемы окружения: OS/2, POSIX и Windows. Как мы уже говорили, подсистема OS/2 была удалена в Windows 2000. Начиная с Windows XP, базовая подсистема POSIX не поставляется с Windows, но ее гораздо более совершенную версию можно получить бесплатно как часть продукта Services for UNIX.

Подсистема Windows отличается от остальных двух тем, что без нее Windows работать не может (эта подсистема обрабатывает все, что связано с клавиатурой, мышью и экраном, и нужна даже на серверах в отсутствие интерактивных пользователей). Фактически остальные две подсистемы запускаются только по требованию, тогда как подсистема Windows работает всегда.

Стартовая информация подсистемы хранится в разделе реестра HKLM SYSTEMCurrentControlSetControlSession ManagerSubSystems. Значения параметров в этом разделе показаны на рис. 2–4.

Значением параметра Required является список подсистем, загружаемых при запуске системы. Параметр состоит из двух строк: Windows и Debug. B параметре Windows указывается спецификация файла подсистемы Windows, Csrss.exe (аббревиатура от Client/Server Run-Time Subsystem; см. примечание ниже). Параметр Debug остается незаполненным (он используется для внутреннего тестирования) и не выполняет никаких функций. Параметр Optional указывает, что подсистемы OS/2 и POSIX запускаются по требованию. Параметр Kmode содержит имя файла той части подсистемы Windows, которая работает в режиме ядра, — Win32k.sys (об этом файле чуть позже).

Подсистемы окружения предоставляют прикладным программам некое подмножество базовых сервисов исполнительной системы Windows. Каждая подсистема обеспечивает доступ к разным подмножествам встроенных сервисов Windows. Это значит, что приложения, созданные для одной подсистемы, могут выполнять операции, невозможные в другой подсистеме. Так, Windows-приложения не могут использовать POSIX-функцию fork.

Каждый исполняемый образ (EXE) принадлежит одной — и только одной — подсистеме. При запуске образа код, отвечающий за создание процесса, получает тип подсистемы, указанный в заголовке образа, и уведомляет соответствующую подсистему о новом процессе. Тип указывается спецификатором /SUBSYSTEM в команде link в Microsoft Visual C++; его можно просмотреть с помощью утилиты Exetype, входящей в состав ресурсов Windows.

ПРИМЕЧАНИЕ Процесс подсистемы Windows назван Csrss.exe потому, что в Windows NT все подсистемы изначально предполагалось выполнять как потоки внутри единственного общесистемного процесса. Когда подсистемы POSIX и OS/2 были выделены в собственные процессы, имя файла процесса подсистемы Windows осталось прежним.

Смешивать вызовы функций разных подсистем нельзя. Иными словами, приложения POSIX могут вызывать только сервисы, экспортируемые подсистемой POSIX, а приложения Windows — лишь сервисы, экспортируемые подсистемой Windows. Как вы еще убедитесь, это ограничение послужило одной из причин, по которой исходная подсистема POSIX, реализующая весьма ограниченный набор функций (только POSIX 1003.1), не стала полезной средой для переноса в нее UNIX-приложений.

Мы уже говорили, что пользовательские приложения не могут вызывать системные сервисы Windows напрямую. Вместо этого они обращаются к DLL подсистем. Эти DLL предоставляют документированный интерфейс между программами и вызываемой ими подсистемой. Так, DLL подсистемы Windows (Kernel32.dll, Advapi32.dll, User32.dll и Gdi32.dll) реализуют функции Windows API. DLL подсистемы POSIX (Psxdll.dll) реализует POSIX API.

ЭКСПЕРИМЕНТ: определение типа подсистемы, для которой предназначен исполняемый файл

Вы можете определить, для какой подсистемы предназначен исполняемый файл с помощью утилиты Exetype из набора ресурсов Windows или утилиты DependencyWalker (Depends.exe), входящей в состав Windows Support Tools и Platform SDK. Попробуем, например, выяснить тип подсистемы для двух принципиально разных Windows-образов: Notepad.exe (простого текстового редактора) и Cmd.exe (поддержки командной строки Windows).

Это показывает, что Notepad является GUI-программой, a Cmd — консольной, или программой текстового режима. Хотя вывод утилиты Exetype сообщает о наличии двух разных подсистем для GUI- и консольных программ, на самом деле существует лишь одна подсистема Windows. Кроме того, Windows не поддерживает процессор Intel 386 (или 486, если это имеет какое-то значение) — текст сообщений, выводимых программой Exetype, просто не обновили.

При вызове приложением одной из функций DLL подсистемы возможно одно из трех.

Функция полностью реализована в пользовательском режиме внутри DLL подсистемы. Иначе говоря, никаких сообщений процессу подсистемы окружения не посылается, и вызова сервисов исполнительной системы Windows не происходит. После выполнения функции в пользовательском режиме результат возвращается вызвавшей ее программе. Примерами таких функций могут служить GetCurrentProcess (всегда возвращает -1, значение, определенное для ссылки на текущий процесс во всех функциях, связанных с процессами) и GetCurrentProcessId (идентификатор процесса не меняется в течение его срока жизни, поэтому его можно получить из кэша, что позволяет избежать переключения в режим ядра).

Функция требует одного или более вызовов исполнительной системы Windows. Например, Windows-функции ReadFile и WriteFile обращаются к внутренним недокументированным сервисам ввода-вывода — соответственно к NtReadFile и NtWriteFile.

Функция требует выполнения каких-либо операций в процессе подсистемы окружения (такие процессы, работающие в пользовательском режиме, отвечают за обслуживание клиентских приложений, выполняемых под их контролем). B этом случае подсистеме окружения выдается клиент-серверный запрос через сообщение с требованием выполнить какую-либо операцию, и DLL подсистемы, прежде чем вернуть управление вызвавшей программе, ждет соответствующего ответа.

Некоторые функции вроде CreateProcess и CreateThread могут требовать выполнения как второго, так и третьего пункта.

Хотя структура Windows позволяет поддерживать несколько независимых подсистем окружения, с практической точки зрения было бы неудобно включать в состав каждой подсистемы свой код для обработки окон и отображения ввода-вывода. Это привело бы к дублированию системных функций и в конечном счете негативно отразилось бы на объеме и производительности системы. Поскольку главной подсистемой была Windows, разработчики решили разместить эти базовые функции именно в ней. Так что другие подсистемы для отображения ввода-вывода вызывают соответствующие сервисы Windows. (Кстати, посмотрев на тип подсистемы в заголовках их файлов, вы убедитесь, что фактически они являются исполняемыми файлами Windows.)

Теперь поближе познакомимся с каждой подсистемой окружения.

Подсистема Windows

Эта подсистема состоит из следующих основных элементов.

Процесса подсистемы окружения (Csrss.exe), предоставляющего:

поддержку консольных (текстовых) окон;

поддержку создания и удаления процессов и потоков;

частичную поддержку процессов 16-разрядной виртуальной DOS-машины (VDM);

множество других функций, например GetTempFile, DefineDosDevice, ExitWindowsEx, а также несколько функций поддержки естественных языков.

Драйвера режима ядра (Win32k.sys), включающего:

диспетчер окон, который управляет отрисовкой и выводом окон на экран, принимает ввод с клавиатуры, мыши и других устройств, а также передает пользовательские сообщения приложениям;

Graphics Device Interface (GDI), который представляет собой библиотеку функций для устройств графического вывода. B GDI входят функции для манипуляций с графикой и отрисовки линий, текста и фигур.

DLL-модулей подсистем (Kernel32.dll, Advapi32.dll, User32.dll и Gdi32.dll), транслирующих вызовы документированных функций Windows API в вызовы соответствующих (и в большинстве своем недокументированных) сервисов режима ядра из Ntoskrnl.exe и Win32k.sys.

Драйверов графических устройств, представляющих собой специфичные для конкретного оборудования драйверы графического дисплея, принтера и минипорт-драйверы видеоплат.

Для формирования элементов управления пользовательского интерфейса на экране, например окон и кнопок, приложения могут вызывать стандартные функции USER. Диспетчер окон передает эти вызовы GDI, а тот — драйверам графических устройств, где они форматируются для дисплея. Драйвер дисплея работает в паре с соответствующим минипорт-драйвером видеоплаты, обеспечивая полную поддержку видео.

GDI предоставляет набор стандартных функций двухмерной графики, которые позволяют приложениям, не имеющим представления о графических устройствах, обращаться к ним. GDI-функции играют роль посредника между приложениями и драйверами дисплея и принтера. GDI интерпретирует запросы приложений на вывод графики и посылает соответствующие запросы драйверам. Он также предоставляет приложениям стандартный унифицированный интерфейс для использования самых разнообразных устройств графического вывода. Этот интерфейс обеспечивает независимость кода приложений от конкретного оборудования и его драйверов. GDI выдает свои запросы с учетом возможностей конкретного устройства, часто разделяя запрос на несколько частей для обработки. Так, некоторые устройства сами умеют формировать эллипсы, а другие требуют от GDI интерпретировать эллипсы как набор пикселов с определенными координатами. Подробнее об архитектуре подсистемы вывода графики и драйвере дисплея см. раздел «Design Guide» в книге «Graphics Drivers» из Windows DDK.

Данный текст является ознакомительным фрагментом.