Суперкомпьютер IBM Watson: элементарно, Ватсон Олег Нечай

We use cookies. Read the Privacy and Cookie Policy

Суперкомпьютер IBM Watson: элементарно, Ватсон

Олег Нечай

Опубликовано 23 июня 2010 года

У хорошо известного нашим читателям Анатолия Вассермана, многократного победителя интеллектуальной телевикторины «Своя игра», появился опасный конкурент – суперкомпьютер IBM Watson, специально разработанный для участия в этой игре, которая в оригинальном американском варианте носит название Jeopardy.

Казалось бы, нет никаких проблем в том, чтобы заставить компьютер находить в памяти ответы на поставленные вопросы. Однако не всё так просто. Во-первых, особенность игры Jeopardy – «обратные вопросы», как в кроссвордах: игрок должен ответить, какое слово соответствует хитроумному определению или заданным условиям. При этом придумывается далеко не словарное определение, в котором нередко переплетаются прямые и переносные значения понятий, а ответ требует развитого ассоциативного мышления и широкого кругозора. Во-вторых, вопросы задаются обычным человеческим языком, поэтому машина должна уметь трансформировать его в понятный для себя. В-третьих, как и у игроков, возможности машины ограничены тем, что уже заложено в её памяти, поиск в интернете невозможен. И, наконец, в четвёртых, ответы принимаются в течение нескольких секунд, так что правильное решение должно быть найдено максимально быстро.

История Watson началась в 2006 году, когда Дэвид Феруччи, старший менеджер отделения IBM по семантическому анализу, занялся тестированием одного из самых мощных суперкомпьютеров компании, занимавшего одну из верхних строчек 500 самых производительных машин мира. Феруччи решил попробовать, насколько эффективно машина будет справляться с задачами, поставленными «естественным языком», и предложил ей ответить на 500 вопросов, заданных в уже состоявшихся программах Jeopardy! Результаты оказались катастрофическими: по сравнению с живыми игроками, машина недостаточно быстро «нажимала на кнопку» (то есть была готова к ответу), а в случае, когда она всё-таки могла конкурировать с людьми, количество правильных ответов не превышало 15%.

Феруччи заинтересовался причинами такого поведения суперкомпьютера и в итоге в 2007 году смог убедить руководство IBM дать ему команду из 15 человек и от 3 до 5 лет на создание эффективной автоматической системы, способной отвечать на неформализованные вопросы. Такая система пригодилась бы всевозможным колл-центрам, справочным и любым другим службам, обслуживающим клиентов. У IBM уже был успешный опыт создания машины, способной поспорить с интеллектом человека – речь идёт о суперкомпьютере Deep Blue, который в 1997 году победил чемпиона мира по шахматам Гарри Каспарова. Эта победа сделала большую рекламу IBM, но коммерческого применения подобной установке найти так и не удалось. В случае же с системой автоматических ответов на вопросы коммерческий потенциал вполне очевиден.

Принципиальное отличие Watson от Deep Blue заключается в том, что если шахматный автомат имеет дело со строго логическими правилами игры, то машина, распознающая «естественную речь», сталкивается в куда более сложными правилами языка и многочисленными искажениями и отклонениями от них. Но самая большая сложность заключается в том, что люди, сами того не осознавая, общаются в рамках своего культурного и социального контекста. В разговорной речи полно намёков, аллюзий и коннотаций, отсылок к неким общим для конкретной общественной среды фактам, понятиям и явлениям. В их числе и религиозные представления, и политические убеждения, и всевозможные произведения искусства – от книг и картин до кинофильмов и компьютерных игр.

Для эффективной обработки подобной информации используются статистические алгоритмы, позволяющие путём анализа самых разнообразных документов устанавливать связь разных понятий друг с другом. Проще говоря, она определяет, какие слова чаще всего употребляются вместе. К примеру, «Кремль» чаще связан со словами «Россия», «Москва», чуть реже с «Казань», «Нижний Новгород», ещё реже – с «собор», «икона»" и т.п. Хотя эти алгоритмы известны давным-давно, полноценно применять их стало возможно лишь в последнее десятилетие – после кардинального роста производительности вычислительной техники и снижения стоимости накопителей для хранения огромных массивов данных.

Команда Феруччи загружает в память IBM Watson миллионы всевозможных документов – учебники, энциклопедии, справочники, художественную и религиозную литературу. Для анализа вопросов одновременно используется более сотни алгоритмов, предлагающих сотни возможных решений. Затем другие алгоритмы оценивают достоверность потенциальных ответов, отсеивая невозможные в силу объективных причин (например, несоответствия даты события и лет жизни действующих лиц) и маловероятные. Чем больше будет получено одинаковых ответов, тем выше вероятность, что они правильны – в процессе игры, на табло выводится рейтинг из нескольких самых вероятных ответов, помимо чаще всего встречающегося.

К 2008 году IBM Watson переместился из разряда «неудачников» на верхние строчки так называемого «облака победителей», состоящего из людей, в 50% случаев успевающих первыми нажать кнопку, сигнализирующую о готовности к ответу и затем в 85-95% случаев дающих правильный ответ. В IBM даже договорились с продюсерами Jeopardy о проведении осенью 2010 года специальной серии игр с участием Watson и победителей прошлых лет. Для подготовки к этим играм (то есть фактически для совершенствования алгоритмов) был воссоздан примерный интерьер студии викторины и стали проводиться испытания с участием живых игроков и ведущего. При этом, как и полагается, «Ватсон» даёт свои ответы вслух синтезированным компьютерным голосом, чем немало веселит присутствующих.

В ходе «тренировок» выяснился занятный факт: несмотря не весь потенциал Watson, он может не только выигрывать большинство игр, но и проигрывать более половины из них. Причин несколько: от «его величества случая» (возможны ситуации, когда соперник может выиграть, просто повышая ставки, оставив машину банкротом) до специфики правил. Как ни странно, но человек способен быстрее нажать на кнопку, чем машина, и это связано с правилами игры, которые менять нельзя.

Дело в том, что каждый вопрос выводится на экран и зачитывается ведущим, причём нажать на кнопку можно только после окончания чтения вопроса. Watson получает текст вопроса в электронном виде одновременно с его выводом на экран, но даже при этом он не успевает прийти к готовому решению быстрее человека. Пока ведущий читает вопрос, на что уходит шесть-семь секунд, опытный игрок уже может оценить свои шансы дать правильный ответ и готов нажать на кнопку за какие-то десятки миллисекунд. На последующий ответ правила отводят ещё пять секунд.

Нажимая на кнопку, человек рискует: если он не даст правильный ответ на вопрос за 100 единиц, его виртуальный счёт опустеет на ту же сумму. Компьютер не склонен рисковать и выдаёт ответы только после проведения всех расчётов и только в том случае, если у него достаточно сведений для оценки достоверности и вероятности того, что этот ответ правильный. Как это выглядит в процессе игры, можно увидеть на видеролике. Рискуя, живой игрок может выиграть благодаря тому, что вспомнит нужный ответ за имеющиеся в его распоряжении 11-12 секунд.

http://www.youtube.com/watch?v=FC3IryWr4c8

В чуть более формализованной ситуации, чем телевикторина, алгоритмы Watson способны дать куда более предсказуемые и точные ответы. В частности, глава исследовательского подразделения IBM Джон Келли намерен создать медицинскую версию этого устройства под неофициальным названием Watson M.D. Такая система помогла бы врачам быстро принимать правильные решения с учётом огромного множества данных о пациенте, которые физически невозможно всегда удерживать в памяти. «Ватсон» вполне может заменить живых операционистов в компьютерных и телефонных службах в розничной торговле, в банковской сфере и на транспорте.

Стоимость системы класса IBM Watson на сегодняшний день может составить несколько миллионов долларов, поскольку для её работы требуется по крайней мере один суперкомпьютер IBM за миллион долларов. Келли считает, что в ближайшие десять лет подобная технология может быть реализована на гораздо более дешёвом сервере, а в перспективе такая программа будет работать на компьютере не дороже современного ноутбука.

PS. Знающие английский язык могут сразиться с IBM Watson онлайн на сайте The New York Times. Вы, конечно, проиграете.

К оглавлению