Использование командного интерпретатора

Использование командного интерпретатора

Самый простой способ — запустить из программного кода дочернюю копию командного интерпретатора, которому затем передать команду запуска процесса. Для этого используется вызов:

int system(const char* command);

где command — текстовая строка, содержащая команду, которую предполагается выполнить ровно в том виде, в котором мы вводим ее командному интерпретатору с консоли.

Примечание

Функция имеет еще одну специфическую форму вызова, когда в качестве command задается NULL. По коду возврата это позволяет выяснить, присутствует ли (и доступен ли) командный интерпретатор в системе (возвращается 0, если интерпретатор доступен).

На время выполнения вызова system() вызывающий процесс приостанавливается. После завершения порожденного процесса функция возвращает код завершения вновь созданной копии интерпретатора (или -1, если сам интерпретатор не может быть выполнен), то есть младшие 8 бит возвращаемого значения содержат код завершения выполняемого процесса. Возврат вызова system() может анализироваться макросом WEXITSTATUS(), определенным в файле <sys/wait.h>. Например:

#include <sys/wait.h>

int main(void) {

 int rc = system("ls");

 if (rc == -1) cout << "shell could not be run" << endl;

 else

  cout << "result of running command is " << WEXITSTATUS(rc) << endl;

 return EXIT_SUCCESS;

}

Примечание

Эта функция использует вызов spawnlp() для загрузки новой копии командного интерпретатора, то есть «внутреннее устройство» должно быть в общем виде вам понятно. Особенностью QNX-реализации является то, что spawnlp() всегда использует вызов /bin/sh, независимо от конкретного вида интерпретатора, устанавливаемого переменной окружения SHELL (ksh, bash…). Это обеспечивает независимость поведения родительского приложения от конкретных установок системы, в которой это приложение выполняется.

Вызов system() является не только простым, но и очень наглядным, делающим код легко читаемым. Программисты часто относятся к нему с пренебрежением[10], отмечая множество его недостатков. Однако в относительно простых случаях это может быть оптимальным решением, а недостатки не так и существенны:

• Используя копию командного интерпретатора, вызов system() может инициировать процесс, исполняющий и бинарную программу, и скрипт на языке самого командного интерпретатора (shell), а также программный код на интерпретирующих языках, таких как Perl, Tcl/Tk и др. Многие из рассматриваемых ниже «чисто программных» способов могут загружать и исполнять только бинарный исполняемый код (по крайней мере, без использования ими весьма громоздких искусственных и альтернативных возможностей).

• Остановка родительского процесса в ожидании завершения порожденного также легко разрешается: просто запускайте дочерний процесс из отдельного потока[11]:

#include <pthread.h>

void* process(void* command) {

 system((char*)command);

 delete command;

 return NULL;

}

int main(int argc, char *argv[]) {

 ...

 char* comstr = "ls -l";

 pthread_create(NULL, NULL, strdup(comstr), &process);

 ...

}

• Часто в качестве недостатка этого способа отмечают «автономность» и невозможность взаимодействия родительского и порожденного процессов.

Но для расширения возможностей взаимосвязи процессов можно прежде всего воспользоваться вызовом popen() (POSIX 1003.1a), являющимся в некотором роде эквивалентом, расширяющим возможности system(). Возможности popen() часто упускаются из виду, так как в описаниях этот вызов относится не к области создания процессов, а к области программных каналов (pipe). Синтаксис этого вызова таков:

FILE* popen(const char* command, const char* mode);

где command — командная строка, как и у system(); mode — режим создаваемого программного канала со стороны порождающего процесса: ввод (mode = «r») или вывод (mode = «w»). Любые другие значения, указанные для mode, дают непредсказуемый результат.

В результате выполнения этой функции создается открытый файловый дескриптор канала (pipe), из которого породивший процесс может (mode = «r») читать (стандартный поток вывода дочернего процесса STDOUT_FILENO) или в который может (mode = «w») писать (стандартный поток ввода дочернего процесса STDIN_FILENO) стандартным образом, как это делается для типа FILE (в частности, с отработкой ситуации EOF).

Рассмотрим следующий пример. Конечно, посимвольный ввод/вывод — это не лучшее решение, и здесь мы используем его только для простоты:

int main(int argc, char** argv) {

 FILE* f = popen("ls -l", "r");

 if (f == NULL) perror("popen"), exit(EXIT_FAILURE);

 char c;

 while((с = fgetc(f)) != EOF )

  cout << (islower(с) ? toupper(с) : c);

 pclose(f);

 return EXIT_SUCCESS;

}

Примечание

Новый процесс выполняется с тем же окружением, что и родительский. Процесс, указанный в команде, запускается примерно следующим эквивалентом:

spawnlp(P_NOWAIT, shell_command, shell_command, "-с", command, (char*)NULL);

где shell_command — командный интерпретатор, специфицированный переменной окружения SHELL или утилита /bin/sh. В этом кроется причина возможного различия в выполнении вызовов system() и popen().

Если popen() возвращает не NULL, то выполнение прошло успешно. В противном случае устанавливается errno: EINVAL — недопустимый аргумент mode, ENOSYS — в системе не выполняется программа менеджера каналов. После завершения работы с каналом, созданным popen(), он должен быть закрыт парной операцией pclose().

При использовании system() в более сложных случаях, например при запуске в качестве дочернего собственного процесса, являющегося составной частью комплекса (до сих пор мы рассматривали в качестве дочерних только стандартные программы UNIX), причем запуск производится из отдельного потока (то есть без ожидания завершения, как предлагалось выше), мы можем реализовать сколь угодно изощренные способы взаимодействия с помощью механизмов IPC, например, открывая в дочернем процессе двунаправленные каналы к родителю.

Поделитесь на страничке

Следующая глава >

Похожие главы из других книг

Использование

Из книги Разгони свой сайт автора Мациевский Николай

Использование Во-первых, мы сперва должны подключить библиотеку cssexpr.js (о ней речь чуть ниже) и только потом вызывать нашу функцию constExpression.<script type="text/javascript" src="cssexpr.js"></script>После этого можно использовать constExpression в любом задаваемом блоке стилей (<style>), или любом


19.7.2. Использование erb

Из книги Программирование на языке Ruby [Идеология языка, теория и практика применения] автора Фултон Хэл


Использование tar

Из книги Сетевые средства Linux автора Смит Родерик В.

Использование tar Утилита tar — одна из самых популярных программ, используемых для резервного копирования в системах Linux и UNIX. Она объединяет несколько файлов в один файл архива, что упрощает передачу информации по сети и сохранение ее на резервном носителе. Название


Использование ip

Из книги Технология XSLT автора Валиков Алексей Николаевич

Использование ip Программа ip предназначена для управления таблицами маршрутизации, в частности, правилами, определенными в них. Выполнение данной программы зависит от значений некоторых подопций опции IP: Advanced Router. Программа ip вызывается следующим образом:ip команда [list |


Использование tc

Из книги Linux: Полное руководство автора Колисниченко Денис Николаевич

Использование tc Утилита tc использует средства ядра, которые активизируются посредством опций меню QoS and/or Fair Queueing. Данная программа управляет исходящим трафиком, в частности, не позволяет одному типу трафика монополизировать пропускную способность линии связи. В


Использование

Из книги Linux и UNIX: программирование в shell. Руководство разработчика. автора Тейнсли Дэвид

Использование Так как MSXML уже давно превратился в стандартный компонент Windows, использовать его можно разными способами - например, в собственных приложениях или как ISAPI-расширение. При разработке XSLT-преобразований MSXML, как правило, применяется либо совместно с браузером


Глава 8 Язык командного интерпретатора

Из книги UNIX — универсальная среда программирования автора Пайк Роб

Глава 8 Язык командного интерпретатора Для автоматизации часто выполняемых работ по обслуживанию системы вам понадобится объединять команды в сценарии. С простейшими сценариями, обеспечивающими последовательное выполнение перечисленных команд, вы уже познакомились в


Переносимость интерпретатора shell

Из книги Linux Mint и его Cinnamon. Очерки применителя автора Федорчук Алексей Викторович

Переносимость интерпретатора shell Если необходимо, чтобы создаваемый сценарий выполнялся под управлением любой системы, он должен обладать свойством переносимости. Переносимость сценариев определяется двумя основными факторами: • синтаксисом языка применяемого


14.1. Понятие о переменных интерпретатора shell

Из книги автора

14.1. Понятие о переменных интерпретатора shell Переменные позволяют выполнить настройку среды. Они содержат информацию, которая применяется определенным пользователем. Благодаря этому система получает более подробные сведения о пользователях. Кроме того, переменные


14.2.3. Отображение значений всех переменных интерпретатора shell

Из книги автора

14.2.3. Отображение значений всех переменных интерпретатора shell Чтобы просмотреть значения всех переменных интерпретатора shell, достаточно воспользоваться командой set.$ setPWD=/rootSHELL=/bin/shSHLVL=1TERM=vt100UID=7USER=davedollar=99great_picture=die hard last_file=ZLPSO.txtВывод команды set может быть довольно обширен;


19.10. Вызов функций интерпретатора shell

Из книги автора

19.10. Вызов функций интерпретатора shell Для вызова функции просто введите ее имя (в данном случае findit) и укажите аргумент, в роли которого может выступать файл, размещенный в системе.$ findit groups/usr/bin/groups


Глава 3 Возможности интерпретатора shell

Из книги автора

Глава 3 Возможности интерпретатора shell Интерпретатор shell — это наиболее важная программа для пользователей UNIX, быть может, за исключением вашего любимого текстового редактора. Она исполняет ваши запросы на запуск программ и занимает гораздо больше вашего времени, чем