10.12. Использование семафоров несколькими процессами
10.12. Использование семафоров несколькими процессами
Правила совместного использования размещаемых в памяти семафоров несколькими процессами просты: сам семафор (переменная типа semt, адрес которой является первым аргументом sem_init) должен находиться в памяти, разделяемой всеми процессами, которые хотят его использовать, а второй аргумент функции sem_init должен быть равен 1.
ПРИМЕЧАНИЕ
Эти правила аналогичны требованиям к разделению взаимного исключения, условной переменной или блокировки чтения-записи между процессами: средство синхронизации (переменная типа pthread_mutex_t, pthread_cond_t или pthread_rwlock_t) должно находиться в разделяемой памяти и инициализироваться с атрибутом PTHREAD_PROCESS SHARED.
Что касается именованных семафоров, процессы всегда могут обратиться к одному и тому же семафору, указав одинаковое имя при вызове sem_open. Хотя указатели, возвращаемые sem_open отдельным процессам, могут быть различны, все функции, работающие с семафорами, будут обращаться к одному и тому же именованному семафору.
Что произойдет, если мы вызовем функцию sem_open, возвращающую указатель на тип sem_t, а затем вызовем fork? В описании функции fork в стандарте Posix.1 говорится, что «все открытые родительским процессом семафоры будут открыты и в дочернем процессе». Это означает, что нижеследующий код верен:
sem_t *mutex; /* глобальный указатель, копируемый, при вызове fork() */
…
/* родительский процесс создает именованный семафор */
mutex = Sem_open(Px_ipc_name(NAME), O_CREAT | O_EXCL, FILE_MODE, 0);
if ((childpid = Fork()) == 0) {
/* дочерний процесс */
…
Sem_wait(mutex);
…
}
/* родительский процесс */
…
Sem_post(mutex);
…
ПРИМЕЧАНИЕ
Причина, по которой следует аккуратно относиться к передаче семафоров при порождении процессов, заключается в том, что состояние семафора может храниться в переменной типа sem_t, но для его работы может требоваться и другая информация (например, дескрипторы файлов). В следующей главе мы увидим, что семафоры System V однозначно определяются их целочисленными идентификаторами, возвращаемыми функцией semget. Любой процесс, которому известен идентификатор, может получить доступ к семафору. Вся информация о семафоре System V хранится в ядре, а целочисленный идентификатор просто указывает номер семафора ядру.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Использование семафоров
Использование семафоров Классической областью применения семафоров является управление распределением конечных ресурсов, когда значение счетчика семафора ассоциируется с определенным количеством доступных ресурсов, например, количеством сообщений, находящихся в
Ограниченность семафоров
Ограниченность семафоров В Windows существуют важные ограничения, касающиеся реализации семафоров. Например, каким образом поток может потребовать, чтобы счетчик семафора уменьшился на 2? Для этого поток мог бы организовать ожидание два раза подряд, как показано ниже, но
Создание и инициализация семафоров
Создание и инициализация семафоров Реализация семафоров зависит от аппаратной платформы и определена в файле <asm/semaphore.h>. Структура struct semaphore представляет объекты типа семафор. Статическое определение семафоров выполняется следующим образом.static DECLARE_SEMAPHORE_GENERIC(name,
Использование семафоров
Использование семафоров Функция down_interruptible() выполняет попытку захватить данный семафор. Если эта попытка неудачна, то задание переводится в состояние ожидания с флагом TASK_INTERRUPTIBLE. Из материала главы 3 следует вспомнить, что такое состояние процесса означает, что задание
Сравнение спин-блокировок и семафоров
Сравнение спин-блокировок и семафоров Понимание того, когда использовать спин-блокировки, а когда семафоры является важным для написания оптимального кода. Однако во многих случаях выбирать очень просто. В контексте прерывания могут использоваться только
Работа с несколькими массивами
Работа с несколькими массивами array_diffОпределение исключительного пересечения массивов.Синтаксис:array array_diff(array arr1, array arr2 [, array ...])Данная функция возвращает массив, который содержит значения, имеющиеся только в массиве arr1 ( и не имеющиеся в любых других). При этом индексы
12.3.1 Определение семафоров
12.3.1 Определение семафоров Семафор представляет собой обрабатываемый ядром целочисленный объект, для которого определены следующие элементарные (неделимые) операции:• Инициализация семафора, в результате которой семафору присваивается неотрицательное значение;•
12.3.2 Реализация семафоров
12.3.2 Реализация семафоров Дийкстра [Dijkstra 65] показал, что семафоры можно реализовать без использования специальных машинных инструкций. На Рисунке 12.6 представлены реализующие семафоры функции, написанные на языке Си. Функция Pprim блокирует семафор по результатам проверки
26.6.1. Создание множества семафоров
26.6.1. Создание множества семафоров Для создания множества семафоров или подключения к уже существующему множеству используется системный вызов semget():int semget(key_t key, int nsems, int semflg);Первый аргумент — это ключ IPC, который, как обычно, создается системным вызовом ftok(). Он
10.16. Реализация с использованием семафоров System V
10.16. Реализация с использованием семафоров System V Приведем еще один пример реализации именованных семафоров Posix — на этот раз с использованием семафоров System V. Поскольку семафоры System V появились раньше, чем семафоры Posix, эта реализация позволяет использовать последние в
11.7. Ограничения семафоров System V
11.7. Ограничения семафоров System V На семафоры System V накладываются определенные системные ограничения, так же, как и на очереди сообщений. Большинство этих ограничений были связаны с особенностями реализации System V (раздел 3.8). Они показаны в табл. 11.1. Первая колонка содержит
4.4.3. Взаимоблокировки исключающих семафоров
4.4.3. Взаимоблокировки исключающих семафоров Исключающие семафоры являются механизмом, позволяющим одному потоку блокировать выполнение другого потока. Это приводит к возникновению нового класса ошибок. называемых взаимоблокировками или тупиковыми ситуациями. Смысл
4.4.4. Неблокирующие проверки исключающих семафоров
4.4.4. Неблокирующие проверки исключающих семафоров Иногда нужно, не заблокировав программу, проверить, захвачен ли исключающий семафор. Для потока не всегда приемлемо находиться в режиме пассивного ожидания, ведь за это время можно сделать много полезного! Функция
5.2.1. Выделение и освобождение семафоров
5.2.1. Выделение и освобождение семафоров Функции semget() и semctl() выделяют и освобождают семафоры, функционируя подобно функциям shmget() и shmctl(). Первым аргументом функции semget() является ключ, идентифицирующий группу семафоров; второй аргумент — это число семафоров в группе;
5.2.2. Инициализация семафоров
5.2.2. Инициализация семафоров Выделение и инициализация семафора — две разные операции. Чтобы проинициализировать семафор, вызовите функцию semctl(), задав второй аргумент равным нулю, а третий аргумент — равным константе SETALL. Четвертый аргумент должен иметь тип union semun, поле
5.2.4. Отладка семафоров
5.2.4. Отладка семафоров С помощью команды ipcs -s можно получить информацию о существующих группах семафоров. Команда ipcrm sem позволяет удалить заданную группу, например:% ipcrm sem