Техника симуляции

We use cookies. Read the Privacy and Cookie Policy

Техника симуляции

Естественным первым шагом будет вынести различающуюся функциональность Matrix‹› в два базовых класса: Matrix_‹›, реализующий общий случай, и Matrix_float_‹› для специфики Matrix‹float,…›.

template‹class T, int Rows, int Columns›

class Matrix_ {

 //…

};

template‹int Rows, int Columns› class Matrix_float_ {

 //…

};

Таким образом, проблема сведется к тому, чтобы класс Matrix‹T, Rows, Columns› наследовался от Matrix_‹T, Rows, Columns› или Matrix_float_‹Rows, Columns›, в зависимости от того, является ли параметр T шаблона Matrix‹› типом float. Решение этой задачи и является главным «фокусом» данной техники.

Несмотря на отсутствие поддержки частичной специализации, компилятор позволяет специализировать шаблоны полностью. Этот факт можно использовать для построения вложенных шаблонов с полной специализацией и выбором подходящего базового класса на соответствующем уровне вложенности.

template‹class T›

struct MatrixTraits {

 template‹int Rows, int Columns›

 struct Dimensions {

  typedef Matrix_‹T, Rows, Columns› Base;

 };

};

template‹›

struct MatrixTraits‹float› {

 template‹int Rows, int Columns›

 struct Dimensions {

  typedef Matrix_float_‹Rows, Columns› Base;

 };

};

Теперь осталось просто унаследовать Matrix‹› от соответствующего класса MatrixTraits‹›::…::Base.

template‹class T, int Rows, int Columns›

class Matrix: public MatrixTraits‹T›::template Dimensions‹Rows, Columns›::Base {

 //…

};

ПРИМЕЧАНИЕ Согласно текущей версии стандарта, использование ключевого слова template при квалификации вложенного шаблона Dimensions в данном случае обязательно, хотя некоторые компиляторы и позволяют его опускать.