Техника симуляции
Техника симуляции
Естественным первым шагом будет вынести различающуюся функциональность Matrix‹› в два базовых класса: Matrix_‹›, реализующий общий случай, и Matrix_float_‹› для специфики Matrix‹float,…›.
template‹class T, int Rows, int Columns›
class Matrix_ {
//…
};
template‹int Rows, int Columns› class Matrix_float_ {
//…
};
Таким образом, проблема сведется к тому, чтобы класс Matrix‹T, Rows, Columns› наследовался от Matrix_‹T, Rows, Columns› или Matrix_float_‹Rows, Columns›, в зависимости от того, является ли параметр T шаблона Matrix‹› типом float. Решение этой задачи и является главным «фокусом» данной техники.
Несмотря на отсутствие поддержки частичной специализации, компилятор позволяет специализировать шаблоны полностью. Этот факт можно использовать для построения вложенных шаблонов с полной специализацией и выбором подходящего базового класса на соответствующем уровне вложенности.
template‹class T›
struct MatrixTraits {
template‹int Rows, int Columns›
struct Dimensions {
typedef Matrix_‹T, Rows, Columns› Base;
};
};
template‹›
struct MatrixTraits‹float› {
template‹int Rows, int Columns›
struct Dimensions {
typedef Matrix_float_‹Rows, Columns› Base;
};
};
Теперь осталось просто унаследовать Matrix‹› от соответствующего класса MatrixTraits‹›::…::Base.
template‹class T, int Rows, int Columns›
class Matrix: public MatrixTraits‹T›::template Dimensions‹Rows, Columns›::Base {
//…
};
ПРИМЕЧАНИЕ Согласно текущей версии стандарта, использование ключевого слова template при квалификации вложенного шаблона Dimensions в данном случае обязательно, хотя некоторые компиляторы и позволяют его опускать.