12.6.3. Определение параметров касающихся геометрических тел
12.6.3. Определение параметров касающихся геометрических тел
В последующих примерах определим основные параметры касающихся геометрических тел, которые позволят, используя рассмотренные ранее приемы, построить соответствующие модели.
Пример 12.13
Условие. Определить высоту тетраэдра, описанного вокруг цилиндра с диаметром и высотой 10 мм. Для построений использовать проекции вспомогательного тетраэдра.
Решение представлено на рис. 12.50.
1. Используя команду Многоугольник, опишите вокруг окружности правильный треугольник.
2. Из вершины треугольника проведите отрезок 12. Точка 2 должна быть построена на уровне верхней грани цилиндра.
3. Через точку 2 проведите отрезок 34, параллельный боковому ребру вспомогательного тетраэдра. Концы отрезка необходимо выровнять до соответствующих осей.
4. Постройте вспомогательный отрезок 45. Точка 5 должна быть расположена на продолжении горизонтальной оси, проходящей через центр окружности.
5. Постройте фронтальную и горизонтальную проекции тетраэдра. Нанесите размер, определяющий высоту тетраэдра.
Пример 12.14
Условие. Определить высоту тетраэдра, описанного вокруг правильной шестиугольной призмы. Расстояние между противоположными гранями призмы — 10 мм. Для построений использовать проекции вспомогательного тетраэдра (рис. 12.51, а).
Решение приведено на рис. 12.51, б.
1. Через точки 1 и 2 проведите отрезок 34, параллельный боковому ребру вспомогательного тетраэдра. Концы отрезка необходимо выровнять до соответствующих осей. Постройте треугольник, описанный вокруг горизонтальной проекции призмы.
2. Из вершины треугольника проведите отрезок 12. Точка 2 должна быть построена на уровне верхней грани призмы.
3. Через точку 2 проведите отрезок 34, параллельный боковому ребру вспомогательного тетраэдра. Концы отрезка необходимо выровнять до соответствующих осей.
4. Постройте вспомогательный отрезок 45. Точка 5 должна быть расположена на продолжении горизонтальной оси, проходящей через центр шестиугольника.
5. Постройте фронтальную и горизонтальную проекции тетраэдра. Нанесите размер, определяющий высоту тетраэдра.
Пример 12.15
Условие. Определить высоту тетраэдра, описанного вокруг куба с ребром, равным 10 мм. Для построений использовать проекции вспомогательного тетраэдра.
Решение представлено на рис. 12.51, в.
1. Через точки 1 и 2 проведите отрезки 34 и 35, параллельные ребрам вспомогательного тетраэдра.
2. Используя команду Окружность, касательная к 3 кривым, в треугольник 345 впишите вспомогательную окружность.
3. Через центр окружности проведите вертикальный отрезок.
4. Из вершины треугольника проведите отрезок 36. Точка 6 должна быть построена на уровне верхней грани куба.
5. Через точку 6 проведите отрезок 78, параллельный боковому ребру вспомогательного тетраэдра. Концы отрезка необходимо выровнять до соответствующих осей.
6. Постройте вспомогательный отрезок 89. Точка 9 должна быть расположена на продолжении горизонтальной оси, проходящей через центр окружности.
7. Постройте фронтальную и горизонтальную проекции тетраэдра. Нанесите размер, определяющий высоту тетраэдра.
Пример 12.16
Условие. Дан тетраэдр, у которого грань вписана в окружность диаметром 40 мм. Вписать в тетраэдр геометрические тела высотой 15 мм. Определить параметры оснований вписанных геометрических тел:
? цилиндра;
? усеченной шестиугольной призмы;
? четырехугольной призмы.
Решение. На рис. 12.52 показаны прямоугольные проекции пирамиды и вписанных в пирамиду заданных тел. Знаком «*» отмечены искомые величины, определенные в результате построений и измерений. На первом этапе строятся проекции треугольника, принадлежащего поверхности пирамиды, которого касаются верхние грани вписанных тел. Далее в горизонтальную проекцию построенного треугольника вписывается верхняя грань соответствующего тела. На рис. 12.52, в показан вспомогательный квадрат со стороной 20 мм, с помощью которого строится горизонтальная проекция вписанной призмы.
Данный текст является ознакомительным фрагментом.