ОПЫТЫ: Доработать напильником при необходимости
ОПЫТЫ: Доработать напильником при необходимости
Автор: Сергей Леонов
«Гонка на скорость» в компьютерной индустрии постепенно сходит на нет, так же как в автомобилестроении притормозилась «гонка за мощностью», а на первый план выходят вопросы эффективности – кто больше проедет на литре горючего (применительно к авто) или кто дольше проработает на батареях (применительно к ноутбукам). Времена Athlon XP, на котором можно было варить яйца, прошли – ту же или более высокую вычислительную мощность сегодня обеспечивают гораздо более «спокойные» решения, и если вы не гонитесь за экстремальной производительностью, то уже вполне можете обеспечить при эксплуатации компьютерной техники тот же уровень комфорта, что и с обычной бытовой техникой. У меня, к примеру, круглосуточно работают дома три настольных компьютера, нисколько не мешая спать по ночам. Но пока это не «стоковые» решения, а «доработанные напильником». Именно об этих доработках и пойдет речь.
Так уж получается, что большинство статей, мною написанных, готовятся дома, где у меня основное рабочее место. Как правило, мне совершенно плевать на отвлекающие факторы, но порой даже ровный шум системного блока мешает сосредоточиться. Вот с шума-то и начнем.
Шумят в основном два типа устройств: кулеры и жесткие диски. Прочие приводы типа оптических или флоппи в расчет можно не брать – они работают лишь периодически. Корпус компьютера иногда тоже способствует ухудшению шумовой обстановки, не заглушая внутренние устройства, а, наоборот, усиливая их шум.
Диски
Несмотря на современные технологии типа гидродинамических подшипников, практически избавившие нас от мерзкого высокочастотного воя шпинделя, у дисков остается как минимум два источника шума: вибрация, вызванная не совсем точной балансировкой пакета пластин, и звук привода головок.
Вибрация сама по себе не слышна, если вы держите диск в руке, но стоит прикрутить его к корпусу… Иногда не помогают даже резиновые вставки и специальные винты, не допускающие касания металла с металлом. В некоторых случаях резиновые вставки не ослабляют, а усиливают вибрацию, что связано с резонансными явлениями. В такт с дисками вибрируют элементы корпуса, а то и стола, на котором находится компьютер. Частота этой вибрации, а соответственно, и вызванных ею акустических колебаний, соответствует оборотам диска: для 5400 об./мин. это 90 Гц, для 7200 – 120 Гц и для 10000 – 166,7 Гц. Для современных дисков это самый громкий звук – посмотрите на спектрограммы [Для корректного снятия подобных спектрограмм требуется микрофон, имеющий хорошую чувствительность в области низких частот, желательно с ровной АЧХ (компьютерные электретные и динамические для караоке к таковым не относятся), и виброизолирующая подвеска (большая масса самого микрофона, его внутренние виброгасители и виброизолирующий штатив не спасают от передачи колебаний через поверхность, на которой он установлен)] [1].
Вариантов уменьшения шума жестких дисков на частоте вращения существует два: увеличение вибрирующей массы и виброизоляция диска от корпуса. Первый вариант реализуется простым жестким креплением диска в кассете и дает хорошие результаты, если корпус изготовлен из толстого металла. Можно также, как рекомендовал Алексей Климов в статье "И не жужжим!" ("КТ" #590), прикрутить к диску дополнительный груз. Однако для большинства типовых корпусов эффективнее второй вариант – мягкая подвеска с одновременной виброизоляцией самого корпуса. Здесь применимы всевозможные эластичные материалы [2].
По Сети гуляют слухи о том, что мягкая подвеска винчестера может сказываться на точности позиционирования головок, и если не нарушить функционирование, то, по крайней мере, увеличить время доступа. Никакими сторонними тестами это утверждение не подтверждается, а официально на сей счет высказалась лишь компания Seagate: влияние мягкой подвески на работу механизма позиционирования действительно есть, однако обнаружить его можно только с помощью специальных средств, снимающих технологические данные непосредственно с сервосистемы накопителя. Любые же замеры внешних параметров накопителя, таких как время позиционирования или количество ошибок, не могут показать этого влияния, так как оно полностью компенсируется внутренними системами диска, не выходит за максимальные расчетные отклонения и, соответственно, никакого вреда для самого накопителя не представляет.
Бороться с еще одним шумовым эффектом диска – «треском» головок – можно с помощью предусмотренного производителем метода: использования возможностей системы AAM (Advanced Acoustic Management), когда она поддерживается накопителем (хотя этот путь снижает производительность). Управлять этим параметром поможет известная утилита MHDD или подобная. Есть, правда, еще вариант – упаковка диска в шумоизолирующую кассету из, например, поролона – но этот способ я рискну рекомендовать только для медленных «холодных» дисков. Винчестер имеет собственную систему контроля температуры, и при превышении границы он если и не отключится, то как минимум будет периодически производить раздражающую рекалибровку или просто приостанавливать выполнение команд, за счет чего тормозится работа всей системы. Охлаждается же диск через поверхность корпуса, и на надевание сверху «шубы» вовсе не рассчитан. Половинчатое решение – укладка диска верхней плоскостью на мягкий эластичный материал – тоже дает эффект, но не забывайте, что микросхемам контроллера нужно охлаждение, и «одеяло» со стороны печатной платы [3] совершенно недопустимо.
В конфигурациях с двумя и более дисками, имеющими одинаковые скорости вращения, присутствует еще один весьма специфический источник звука – акустические биения, заставляющие резонировать конструктивные элементы корпуса, чаще всего – боковые стенки. Источник этих биений – небольшое отличие скоростей вращения пакетов пластин в дисках. Услышать разностный звук с частотой в десятые доли герца наше ухо не в состоянии, но модуляция основной частоты вращения этими биениями весьма неприятна на слух – волнообразно нарастающие и спадающие колебания, которые хорошо видны на микрофонной записи [4.1]. Сергей Вильянов в одной из статей для "Домашнего компьютера" по рекомендации специалистов применил в этом случае, наоборот, не мягкое, а жесткое крепление дисков, что дало эффект, однако уменьшая биения, жесткое крепление увеличивает шум на основной частоте (этот равномерный звук, впрочем, многим будет более приятен, чем "разностный"). Я же предлагаю другой метод. Кардинально устранить биения поможет разнесение в пространстве осей вращения дисков – например, один должен быть установлен вертикально, а второй горизонтально. При том что конструктивы большинства корпусов такой установки не предусматривают, подойдет более практичный вариант – перевернуть один из дисков "вверх ногами". Такое положение ничем не грозит и допускается изготовителями, а колебания при этом будут выглядеть совсем иначе [4.2].
Попутно
• Если у вас есть выбор между разными сериями дисков, выбирайте тот, у которого меньше пластин, лучше – одна, у них даже паспортные значения шума меньше. Чем меньше вращающаяся масса, тем меньше проявляется ее дисбаланс (теоретически балансировка должна обеспечивать одинаковый дисбаланс для любых дисков, но в отличие от автомобильных колес, где дисбаланс определяется динамически по двум краям колеса (на внешнюю и внутреннюю части обода крепятся разные грузы), пакеты пластин балансируются в одной плоскости, что обеспечивает точную статическую балансировку, но не динамическую.
• Не забывайте, что вибрационный шум обычно прямо пропорционален скорости вращения шпинделя. Иногда стоит остановиться на модели 7200 об./мин. или даже меньше, а не гнаться за "десятитысячником".
• Послушайте звуки позиционирования дисков разных производителей. Тональность, как правило, у всех разная, одна будет вас сильно раздражать, а с другой вы легко свыкнетесь. Я, к примеру, не замечаю сухой «треск» IBM-Hitachi, но не выношу звука "консервных банок" старых серий Seagate.
• Алгоритмы управления позиционером головок и конструкция подвижных частей постоянно совершенствуются, так что обычно чем новее модель, тем меньше она "трещит". Современные накопители используют адаптивную систему позиционирования – скорость перемещения головок не установлена всегда на максимум, а рассчитывается исходя из времени «подхода» нужного сектора к головке, общий «треск» при этом почти не превышает уровня, соответствующего наиболее тихому режиму по AAM. Сама система AAM в таких дисках применяется редко.
Кулеры
Вентиляторы кулеров издают довольно широкий спектр звуков, среди которых для высокоскоростных преобладает пик на частоте вращения, а для низкоскоростных – низкочастотный широкополосный шум воздуха. С воем на частоте вращения без потери производительности справиться нельзя никак, но зачастую снижение оборотов не приводит к значительному росту температуры. Во многих случаях снизить частоту вращения помогут штатные решения – системные платы с регулировкой оборотов вентиляторов (как минимум это многие модели ASUS и Intel, а также современные платы с четырехштырьковым коннектором для вентилятора), у них достаточно настроить соответствующие параметры в BIOS Setup. Иногда встречаются и кулеры с собственными регуляторами оборотов. Нерегулируемые же 12-вольтовые вентиляторы я традиционно «торможу» включенными в питающий (красный) провод резисторами 0,25 Вт сопротивлением от 30 до 130 Ом [5]. Точный номинал приходится подбирать, ибо он зависит и от мощности, и от номинальной частоты вращения вентилятора, и от количества/формы лопастей. Самое главное – не перестараться, ибо с трудом стартующий вентилятор в один «прекрасный» день может не раскрутиться вовсе благодаря вечной спутнице системного блока – пыли (о ней поговорим чуть ниже).
На отдельных видеокартах попадаются нерегулируемые пятивольтовые вентиляторы, тормозить которые резисторами сложно – с добавочным сопротивлением они просто перестают работать. Для них подойдет регулировка последовательным включением в цепь импульсных диодов (в прямом направлении, каждый снижает напряжение на 0,5–0,6 В). Обычно достаточно два или три диода.
Настоящий бич в смысле однотонального шума – миниатюрные вентиляторы чипсета материнской платы, они визжат не хуже кошки, которой наступили на хвост. Но увы, они совершенно необходимы, например, для плат на базе nForce4. Заменить их пассивными радиаторами не получается – тепловыделение таково, что даже выпиленная по форме (вписывающаяся между PCI-E) охлаждающаяся конструкция не помогает. Зато на нее уже можно поставить вентилятор низкооборотный [6].
Для улучшения охлаждения видеокарт (вернее, для сохранения того же уровня охлаждения при пониженных оборотах вентилятора) зачастую может помочь простое решение – закрытие щели между внешними краями лопастей и кожухом радиатора. Накладку можно сделать даже из плотной бумаги, приклеив по периметру любым клеем. Она снижает температуру графического процессора на 3-5 градусов, что весьма неплохо [7]. Если же оставить температуру на прежнем уровне, можно значительно снизить обороты вентилятора.
Бороться с шумом воздуха обычно не имеет смысла – его хорошо глушит просто закрытый корпус, к тому же этот шум широкополосный и не так раздражает, как однотональный вой.
Корпус
Главный момент – все детали корпуса должны иметь жесткое крепление. Незатянутые винты и разболтанные заклепки приводят к периодически появляющемуся дребезгу, проявляющемуся при каких-то определенных условиях и сильно раздражающему. В целях общей шумоизоляции крышку корпуса (или крышки, если их несколько) имеет смысл обклеить виброизолирующим материалом, крепить который можно на двухсторонний тканевый скотч [8]. Такое покрытие гасит и общий шум, и вибрации, что хорошо видно на спектрограммах [9]. Если корпус установлен на столе, имеет смысл также подложить что-нибудь мягкое под ножки.
Компактные мини-тауэры с блоком питания, установленным вертикально на одном уровне с верхней кромкой системной платы, предлагаю сразу отнести на помойку – намучаетесь. Современные процессорные кулеры имеют такую высоту, что блок питания зачастую не просто перекрывает им входной поток, но и не позволяет установить в корпус вообще. Кроме того, если вентиляционные отверстия блока питания расположены снизу (в новых блоках там установлен собственно вентилятор), при установке в подобный корпус эти отверстия или вентилятор окажутся прямо напротив процессорного кулера. Возникнет два противоположно направленных потока, ничего хорошего от которых (кроме 60–70 градусов на процессоре) ждать не приходится.
Пыль
Наконец, займемся еще одним важным вопросом – защитой от пыли. Стандартный современный компьютер, работающий в домашних условиях, приходится обычно чистить раз в полгода – за это время теплоотвод от радиаторов серьезно ухудшается. Легкий доступ к внутренностям компьютера и хороший пылесос, в принципе, позволяют не особо озадачиваться продлением указанного срока, однако иногда имеет смысл сделать некоторые изменения в конструкции, чтобы не лазить в корпус подольше. К примеру, один из моих «подопечных» компьютеров установлен в цеху автосервиса, где пыль забивает радиаторы за месяц, а через полгода просто перестают крутиться вентиляторы.
В любом случае нам потребуется какой-то фильтр – мелкоячеистая сетка, не слишком плотная ткань или другие подобного рода материалы (неплохо подойдет плотный капрон черных женских колготок). В некоторых корпусах такой фильтр предусмотрен изначально – например, в популярном Ascot 6AR. Оптимальное место размещения фильтра для вертикальных корпусов – нижняя часть передней панели, там пространства обычно хватает. Делать фильтр съемным и размещать под декоративной решеткой, как в AR6, не обязательно, для домашних условий мне даже больше нравится вариант открытый – всегда видно, насколько он чист, и не надо ничего разбирать для удаления накопившейся пыли с помощью пылесоса [10]. В некоторых случаях, однако, лучше подойдет съемный вариант – в частности, в упомянутом автосервисе работники предпочитают чистку не пылесосом, а струей сжатого воздуха, продувая фильтр изнутри.
Но фильтра на входе еще недостаточно для долговременного обеспечения чистоты. Проблема в том, что все современные корпуса при работе в закрытом состоянии имеют внутри некоторое разрежение – вытяжных вентиляторов в них обычно больше, чем нагнетающих, либо суммарная производительность этих вытяжных вентиляторов выше. В простых корпусах вообще нет собственных вентиляторов, а воздушный поток обеспечивает единственный вентилятор в блоке питания – он работает на вытяжку. Упомянутый 6AR имеет два собственных вентилятора одинаковых габаритов и производительности, при этом на вытяжку работают два (корпусной и блока питания), а на нагнетание – один. Если установлена мощная видеокарта с перфорированной задней планкой – она дает еще большее разряжение, так как тоже работает на вытяжку. Внутреннее разряжение хоть и невелико, но воздух при этом всасывается не только через фильтр, но и через все щели и неплотности корпуса – в частности, через оптические приводы, которые весьма не любят пыли.
Я не очень понимаю, почему юго-восточные производители корпусов зациклились на таком конструктиве – ведь решение давно существует. Вспомним, например, КУНГи – негерметичные кузова армейских автомобилей. Они обеспечивают внутри тот же уровень защиты, что и противогаз, хотя там могут быть всевозможные щели и неплотности. Защищает же от проникновения неочищенного забортного воздуха система воздушного подпора – довольно мощный нагнетатель с угольным фильтром на входе, который создает внутри кузова избыточное давление, в результате чего воздушный поток через все не предусмотренные конструкцией отверстия в корпусе движется только в одну сторону – наружу.
Перенести эту технологию на компьютерные корпуса совсем не трудно – достаточно поставить нагнетающий вентилятор с хорошей производительностью и фильтром на входе. Если все это уже есть (как в 6AR), нужно лишь изменить соотношение производительности так, чтобы воздушный поток нагнетающего вентилятора был больше суммы потоков вытяжных вентиляторов. Проверяется это довольно просто: например, путем поднесения зажженной сигареты к щелям или отверстиям в корпусе – дым не должен втягиваться внутрь. При необходимости входной вентилятор можно заменить на более мощный, в таком случае допустимо совсем отключить вытяжные вентиляторы (для корпусных – с заклейкой соответствующих отверстий в корпусе) или снизить их обороты. Вентилятор блока питания отключать не рекомендую – нынешние модели обычно имеют плату, установленную сверху, и полное отключение нарушит циркуляцию воздуха в самом блоке. Единственный тонкий момент – обеспечение герметизации объема между нагнетающим вентилятором и фильтром – там будет значительное разрежение. Когда вентилятор установлен на передней стенке корпуса, а фильтр – на пластиковой передней панели, герметичность легко обеспечивается поролоном [11]. Все прочие вентиляционные отверстия в корпусе (на боковых и задних стенках, но не на блоке питания) я обычно заклеиваю изнутри скотчем. Популярное сегодня решение в виде пластикового воздуховода на боковой стенке корпуса, через который, по идее, должен поступать «забортный» воздух к кулеру процессора (такой воздуховод появился и в последних модификациях корпуса 6AR), я не использую – во-первых, воздуховод, как правило, не точно совпадает с размещением процессора на плате, во-вторых, для не-экстремальных версий процессоров воздуха и так достаточно. Воздуховод можно просто снять, а отверстия опять же заклеить изнутри скотчем.
Проводя указанные изменения, не забывайте о программах мониторинга температуры в комплекте с утилитами, нагружающими компьютер по максимуму, – иногда довольно трудно предсказать, как изменятся воздушные потоки внутри корпуса при переделках.
В целом указанные доработки вполне можно сделать за один день в неспешном темпе с перекурами, что обеспечит вам комфортное сосуществование с настольным компьютером до его очередного апгрейда. Производители компьютерной техники, впрочем, не забывают о повышении ее комфортности, но процесс этот небыстр, и на ближайшие несколько лет у вас еще будет к чему приложить руки.
Попутно
Старайтесь использовать вентиляторы большого диаметра – они обеспечивают тот же воздушный поток при более низких оборотах. При одинаковом диаметре выбирайте более толстый вентилятор: скажем, взамен вентилятора для охлаждения чипсета высотой 10 мм лучше поставить такой же по диаметру, но с дюймовой высотой (около 25 мм), используемый в бытовой технике (например, в DVD-плеерах), – он работает на более низких оборотах.