3.9.2. Взаимосвязь массивов и указателей

3.9.2. Взаимосвязь массивов и указателей

Если мы имеем определение массива:

int ia[] = { 0, 1, 1, 2, 3, 5, 8, 13, 21 };

то что означает простое указание его имени в программе?

ia;

Использование идентификатора массива в программе эквивалентно указанию адреса его первого элемента:

ia;

ia[0]

Аналогично обратиться к значению первого элемента массива можно двумя способами:

// оба выражения возвращают первый элемент

*ia;

ia[0];

Чтобы взять адрес второго элемента массива, мы должны написать:

ia[1];

Как мы уже упоминали раньше, выражение

ia+1;

также дает адрес второго элемента массива. Соответственно, его значение дают нам следующие два способа:

*(ia+1);

ia[1];

Отметим разницу в выражениях:

*ia+1

и

*(ia+1);

Операция разыменования имеет более высокий приоритет, чем операция сложения (о приоритетах операций говорится в разделе 4.13). Поэтому первое выражение сначала разыменовывает переменную ia и получает первый элемент массива, а затем прибавляет к нему 1. Второе же выражение доставляет значение второго элемента.

Проход по массиву можно осуществлять с помощью индекса, как мы делали это в предыдущем разделе, или с помощью указателей. Например:

#include iostream

int main()

{

int ia[9] = { 0, 1, 1, 2, 3, 5, 8, 13, 21 };

int *pbegin = ia;

int *pend = ia + 9;

while ( pbegin != pend ) {

cout *pbegin ;

++pbegin;

}

}

Указатель pbegin инициализируется адресом первого элемента массива. Каждый проход по циклу увеличивает этот указатель на 1, что означает смещение его на следующий элемент. Как понять, где остановиться? В нашем примере мы определили второй указатель pend и инициализировали его адресом, следующим за последним элементом массива ia. Как только значение pbegin станет равным pend, мы узнаем, что массив кончился. Перепишем эту программу так, чтобы начало и конец массива передавались параметрами в некую обобщенную функцию, которая умеет печатать массив любого размера:

#include iostream

void ia_print( int *pbegin, int *pend )

{

while ( pbegin != pend ) {

cout *pbegin ;

++pbegin;

}

}

int main()

{

int ia[9] = { 0, 1, 1, 2, 3, 5, 8, 13, 21 };

ia_print( ia, ia + 9 );

}

Наша функция стала более универсальной, однако, она умеет работать только с массивами типа int. Есть способ снять и это ограничение: преобразовать данную функцию в шаблон (шаблоны были вкратце представлены в разделе 2.5):

#include iostream

template c1ass e1emType

void print( elemType *pbegin, elemType *pend )

{

while ( pbegin != pend ) {

cout *pbegin ;

++pbegin;

}

}

Теперь мы можем вызывать нашу функцию print() для печати массивов любого типа:

int main()

{

int ia[9] = { 0, 1, 1, 2, 3, 5, 8, 13, 21 };

double da[4] = { 3.14, 6.28, 12.56, 25.12 };

string sa[3] = { "piglet", "eeyore", "pooh" };

print( ia, ia+9 );

print( da, da+4 );

print( sa, sa+3 );

}

Мы написали обобщенную функцию. Стандартная библиотека предоставляет набор обобщенных алгоритмов (мы уже упоминали об этом в разделе 3.4), реализованных подобным образом. Параметрами таких функций являются указатели на начало и конец массива, с которым они производят определенные действия. Вот, например, как выглядят вызовы обобщенного алгоритма сортировки:

#include a1gorithm

int main()

{

int ia[6] = { 107, 28, 3, 47, 104, 76 };

string sa[3] = { "piglet", "eeyore", "pooh" };

sort( ia, ia+6 );

sort( sa, sa+3 );

};

(Мы подробно остановимся на обобщенных алгоритмах в главе 12; в Приложении будут приведены примеры их использования.)

В стандартной библиотеке С++ содержится набор классов, которые инкапсулируют использование контейнеров и указателей. (Об этом говорилось в разделе 2.8.) В следующем разделе мы займемся стандартным контейнерным типом vector, являющимся объектно-ориентированной реализацией массива.