3.2.5. Бесконечные дроби
3.2.5. Бесконечные дроби
Из школы мы все помним, что не каждое число может быть записано конечной десятичной дробью. Бесконечные дроби бывают двух видов: периодичные и непериодичные. Примером непериодичной дроби является число ?, периодичной — число ? или любая другая простая дробь, не представимая в виде конечной десятичной дроби.
Примечание
Напомним, что периодичные дроби — это такие дроби которые содержат бесконечно повторяющуюся последовательность цифр. Например, 1/9=0,11111…, 1/12=0,08333333…, 1/7=0,142857142857… Такие числа записывают со скобками — в них заключают повторяющуюся часть. Те же числа должны быть записаны так: 1/9=0,1(1), 1/12=0,08(3), 1/7=0,1(428571)
Вопрос о периодичности или непериодичности числа нас сейчас не интересует, нам достаточно знать, что не все числа можно представить в виде конечной десятичной дроби. При работе с такими числами мы всегда имеем не точное, а приближенное значение, поэтому ответ получается тоже приближенным. Это нужно учитывать в своих расчетах.
До сих пор мы говорили только о десятичных бесконечных дробях. Но двоичные дроби тоже могут быть бесконечными. Даже более того, любое число, выражаемое конечной двоичной дробью, может быть также выражено и десятичной конечной дробью. Но существуют числа (например, 1/5), которые выражаются конечной десятичной дробью, но не могут быть выражены конечной двоичной дробью. Это и есть наиболее важное отличие аппаратной реализации вещественных чисел от наших интуитивных представлений. Теперь у нас достаточно теоретических знаний, чтобы перейти к рассмотрению конкретных примеров — "подводных камней", приготовленных вещественными числами.
Данный текст является ознакомительным фрагментом.