1.3.4.4. Траектории
1.3.4.4. Траектории
API Windows реализует поддержку специфических объектов, называемых траекториями (path). Траектория представляет собой запись движения пера и включает один или несколько замкнутых контуров. Каждый контур состоит из отрезков прямых и кривых Безье. Для построения траектории в Windows NT/2000/XP могут быть задействованы все графические функции рисования прямых, кривых и замкнутых контуров, а также функции вывода текста (в этом случае замкнутые контуры будут совпадать с контурами символов). В Windows 9x/Me могут быть использованы только функции рисования прямых, ломаных, многоугольников (за исключением PolyDraw и Rectangle), кривых Безье и функций вывода текста. Функции рисования эллипсов, окружностей и эллиптических дуг не могут быть использованы для создания траектории в Windows 9x/Me, т. к. в этих системах эллиптические кривые рисуются специальным алгоритмом, а не аппроксимируются кривыми Безье. Для создания траектории предусмотрены функции BeginPath и EndPath. Все вызовы графических функций, расположенные между BeginPath и EndPath, вместо вывода в контекст устройства будут создавать в нем траекторию.
После того как траектория построена, ее можно отобразить или преобразовать. Мы не будем здесь перечислять все возможные операции с траекториями, остановимся только на преобразовании траектории в ломаную. Как уже отмечалось, все контуры траектории представляют собой набор отрезков прямых и кривых Безье. С другой стороны, при построении кривой Безье она аппроксимируется ломаной. Следовательно, вся траектория может быть аппроксимирована набором отрезков прямой. Функция FlattenPath преобразует кривые Безье, входящие в состав траектории, в ломаные линии. Таким образом, после вызова этой функции траектория будет состоять из отрезков прямой.
Отметим также некоторые другие преобразование траектории, полезные для создания графических редакторов и подобных им программ. Функция PathToRegion позволяет преобразовать траекторию в регион. Это может понадобиться, в частности, при определении того обстоятельства, попадает ли курсор мыши в область объекта, представляемого сложной фигурой. Функция WidenPath превращает каждый контур траектории в два контура — внутренний и внешний. Расстояние между ними определяется толщиной текущего пера. Таким образом, траектория как бы утолщается. После преобразования утолщенной траектории в регион можно определить, попадает ли курсор мыши на кривую с учетом погрешности, определяемой толщиной пера.
Получить информацию о точках текущей траектории можно с помощью функции GetPath. Для каждой точки траектории эта функция возвращает координаты и тип точки (начальная линии, замыкающая точка отрезка, точка кривой Безье, конец контура).
Таким образом, создав траекторию из кривой Безье (BeginPath/PoliBezier/EndPath), мы можем преобразовать эту траекторию в ломаную (FlattenPath), а затем получить координаты угловэтой ломаной (GetPath). А каждое звено этой ломаной мы можем нарисовать произвольным стилем, используя LineDDA. Таким образом, задача построения кривой Безье сведена к уже решенной задаче построения отрезка.
В листинге 1.60 реализован метод DrawCurve, выполняющий указанные действия. Здесь FCurve — это поле формы типа TCurve, в котором хранятся координаты четырех точек, образующих кривую.
Листинг 1.60. Работа с траекторией на основе кривой Безье
type
// Тип TCurve хранит координаты кривой в следующем порядке: начало,
// первую промежуточную точку, вторую промежуточную точку, конец
TCurve = array[0..3] of TPoint;
// Функция обратного вызова для LineDDA
procedure LineDrawFunc(X, Y: Integer; Canvas: TCanvas); stdcall;
begin
case CurveForm.RGroupType.ItemIndex of
// Разноцветные шарики
0: if CurveForm.FCounter mod 10 = 0 then
begin
Canvas.Pen.Style:= psSolid;
Canvas.Pen.Width:= 1;
Canvas.Brush.Style:= bsSolid;
if CurveForm.FCounter mod 15 = 0 then Canvas.Pen.Color:= clBlue
else if CurveForm.FCounter mod 15 = 5 then Canvas.Pen.Color:= сlLime
else Canvas.Pen.Color:= clRed;
Canvas.Brush.Color:= Canvas.Pen.Color;
Canvas.Ellipse(X — 2, Y — 2, X + 3, Y + 3);
end;
// Поперечные полосы
1: it CurveForm.FCounter mod 5 = 0 then
begin
Canvas.Pen.Style:= psSolid;
Canvas.Pen.Width:= 1;
Canvas.Pen.Color:= clBlue;
Canvas.MoveTo(X–CurveForm.FDX, Y — CurveForm.FDY);
Canvas.LineTo(X + CurveForm.FDX, Y + CurveForm.FDY);
end;
// Плакатное перо
2: begin
Canvas.Pen.Style:= psSolid;
// Предположим, некоторая точка прямой имеет координаты (X, Y),
// а соседняя с ней — координаты (Х+1, Y-1). Тогда при проведении
// через эти точки наклонной линии одинарной ширины между ними
// останутся незаполненные точки, как на шахматной доске.
// Поэтому потребовалось увеличить толщину пера
Canvas.Pen.Width:= 2;
Canvas.Pen.Color:= clBlack;
Canvas.MoveTo(X — 5, Y — 5);
Canvas.LineTo(X + 6, Y + 6);
end;
// Цепочка
3: begin
case CurveForm.FCounter mod 15 of
0: begin
Canvas.Pen.Style:= psSolid;
Canvas.Pen.Width:= 1;
Canvas.Pen.Color:= clBlack;
Canvas.Brush.Style:= bsClear;
Canvas.Ellipse(X — 5, Y — 5, X + 6, Y + 6);
end;
2..13: Canvas.Pixels[X, Y]:= clBlack;
end;
end;
end;
Inc(CurveForm.FCounter);
end;
procedure TCurveForm.DrawCurve(Canvas: TCanvas);
var
LCurve: TCurve;
I, Size: Integer;
PtBuf: array of TPoint;
TpBuf: array of Byte;
L: Extended;
begin
// LCurve хранит координаты начала и конца кривой и ее
// опорных точек. Если включен режим рисования по опорным
// точкам, LCurve совпадает с FCurve, если включен режим
// рисования по точкам кривой, опорные точки LCurve[1]
// и LCurve[2] рассчитываются по приведенным в книге
// формулам на основании точек FCurve
LCurve:= FCurve;
if RGroupDrawMethod.ItemIndex = 1 then
begin
LCurve[1].X:=
Round((-5 * FCurve[0].X + 18 * FCurve[1].X -
9 * FCurve[2].X + 2 * FCurve[3].X) / 6);
LCurve[1].Y:=
Round((-5 * FCurve[0].Y + 18 * FCurve[1].Y -
9 * FCurve[2].Y + 2 * FCurve[3]-Y) / 6);
LCurve[2].X:=
Round((2 * FCurve[0].X — 9 * FCurve[1].X +
18 * FCurve[2].X — 5 * FCurve[3].X) / 6);
LCurve[2].Y:=
Round((2 * FCurve[0].Y — 9 * FCurve[1].Y +
18 * FCurve[2].Y — 5 * FCurve[3].Y) / 6);
end;
// Создаем траекторию на основе кривой
BeginPath(Canvas.Handle);
Canvas.PolyBezier(LCurve);
EndPath(Canvas.Handle);
// Аппроксимируем траекторию отрезками прямых
FlattenPath(Canvas.Handle);
// Получаем число точек траектории. Так как сами точки никуда
// пока не копируются, в качестве фиктивного буфера можно указать
// любую переменную. В данном случае — переменную I
Size:= GetPath(Canvas.Handle, I, I, 0);
// Выделяем память для хранения координат и типов точек траектории
SetLength(PtBuf, Size);
SetLength(TpBuf, Size);
// Получаем координаты и типы точек. Типы точек нас в данном случае
// не интересуют: у первой точки будет тип PT_MOVETO,
// а у остальных — PT_LINETO. Появление PT_MOVETO у других точек
// невозможно, т. к. траектория содержит только один замкнутый
// контур, состояний из кривой и соединяющей ее концы прямой.
// Появление точек типа PT_BEZIERTO также исключено, т. к. после
// вызова FlattenPath контур содержит только отрезки прямых.
// Поэтому значения, записанные в TpBuf, будут в дальнейшем
// игнорироваться
GetPath(Canvas.Handle, PtBuf[0], TpBuf[0], Size);
FCounter:= 0;
// Рисуем по отдельности каждый из отрезков, составляющих контур
for I:= 1 to Size — 1 do
begin
// Вычисляем длину отрезка
L:=
Sqrt(Sqr(PtBuf[I — 1].X — PtBuf[I].X) +
Sqr(PtBuf[I — 1].Y — PtBuf[I].Y));
// Практика показала, что аппроксимированный контур может
// содержать отрезки нулевой длины — видимо, это издержки
// алгоритма аппроксимации. Так как в дальнейшем нам придется
// делить на L, такие отрезки мы просто игнорируем, т. к.
// на экране они все равно никак не отображаются
if L > 0 then begin
// переменные FDX и FDY используются только при рисовании
// линии типа "поперечные полосы". Если бы линии этого
// типа не было, то FDX, FDY, а так же L можно было бы
// не рассчитывать
FDX:= Round (4 * (PtBuf[I — 1].Y — PtBuf[I].Y) / L);
FDY:= Round(4 * (PtBuf[I].X — PtBuf[I — 1].X) / L);
LineDDA(PtBuf[I — 1].X, PtBuf[I — 1].Y, PtBuf[I].X, PtBuf[I].Y,
@LineDrawFunc, Integer(Canvas));
end;
end;
end;
Данный текст является ознакомительным фрагментом.