Гармонический состав выходного напряжения
Гармонический состав выходного напряжения
Продолжая изучение усилителя в проекте selfbs, сравним входное синусоидальное напряжение с синусоидальным выходным напряжением, чтобы увидеть, ограничивается ли выходное напряжение или проявляется какое-либо другое искажение его формы. Чтобы выполнять анализ, заменим источник входного напряжения типа VAC на источник типа VSIN. Зададим нулевое напряжение смещения, амплитуду в 10 мВ и частоту в 5 кГц. Подготовим моделирование на PSpice с именем Selfbs2 и выполним анализ переходных процессов на временном интервале в 0,2 мс с максимальным размером шага в 0,2 мкс. Нажмите кнопку Output File Options и выберите поле Fourier analysis. Установите основную частоту в 5 кГц и число гармоник, равное 5. Выходная переменная — V(Vout).
Выполните моделирование и получите в Probe графики V(Vout) и V(Vs:+). После соответствующей маркировки кривых сравните результаты с представленными на рис. 17.20. На первый взгляд, выходное напряжение кажется точной копией входного, перевернутой на 180°. Используйте курсор, чтобы найти первый отрицательный минимум и первый положительный максимум выходного напряжения. Они равны -1,61 В и 1,372 В соответственно и отличаются из-за того, что мы рассматриваем первый период переходного процесса.
Рис. 17.20. Сравнение временных диаграмм входного и выходного напряжений
В лаборатории осциллограф не отобразил бы переходные процессы, и мы увидели бы искажение в чистом виде. Это искажение характеризуется гармоническим составом и хорошо отражено в выходном файле, часть которого показана на рис. 17.21. Первая (основная) гармоника имеет частоту f=1 кГц с амплитудой 1,491 В. Сравнивая эту величину с амплитудами остальных гармоник от второй до пятой, мы видим, что влияние более высоких гармоник невелико. Если мы просто сложим величины перечисленных гармоник, то получим результат 1,61 В. В прежнем анализе, использующем источник типа VAC в качестве входного, мы нашли, что Vout=1,51 В. Значение 1,61 В, очевидно, неверно для выходного напряжения, так как мы пренебрегли фазовыми углами отдельных гармоник. Обратите внимание, что общее гармоническое искажение меньше чем 7,7%.
**** 09/05/99 13:29:29 *********** Evaluation PSpice (Nov 1998) **************
** circuit file for profiles Selfbs2
* Local Libraries :
.LIB ".selfbs.lib"
* From [PSPICE NETLIST] section of pspiceev.ini files
.lib nom.lib
*Analysis directives:
.TRAN 0.02ms 0.2ms 0 0.2us
.FOUR 5kHz 5 V([VOUT])
.PROBE
*Netlist Files
.INC "selfbs-SCHEMATIC1.net"
*Alias File:
**** INCLUDING selfbs-SCHEMATIC1.net ****
* source SELFBS
R_Rin VOUT 0 9.4k
R_RE 6 0 220
R_RC 4 5 9.4k
R_R2 3 0 3.3k
R_R1 4 3 40k
R_Rs 1 2 50
Q_Q1 5 3 6 Q2N3904
C_C2 6 0 15uF
C_C3 5 VOUT 15uF
С_Cb 2 3 15uF
V_CC 4 0 12V
V_Vs 1 0
+SIN 0 10mV 5kHz 0 0 0
.INC "selfbs-SCHEMATIC1.als"
.ENDALIASES
**** INITIAL TRANSIENT SOLUTION TEMPERATURE = 27.000 DEG С
NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE
( 1) 0.0000 ( 2) 0.0000 ( 3) .8722 ( 4) 12.0000
( 5) 3.2056 ( 6) .2089 ( VOUT) 0.0000
VOLTAGE SOURCE CURRENTS
NAME CURRENT
V_VCC -1.214E-03
V_Vs 0.000E+00
TOTAL POWER DISSIPATION 1.46E-02 WATTS
**** FOURIER ANALYSIS TEMPERATURE = 27.000 DEG С
FOURIER COMPONENTS OF TRANSIENT RESPONSE V(VOUT)
DC COMPONENT = -8.776912E-03
HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED
NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)
1 5.000E+03 1.491E+00 1.000E+00 -1.760Е-02 0.000E+00
2 1.000E+04 1.146E-01 7.688E-02 9.978E+01 2.757E+02
3 1.500E+04 4.701E-03 3.1541-03 1.098E+01 1.9491+02
4 2.000E+04 2.146E-04 1.440E-04 -1.622E+00 1.743E+02
5 2.500E+04 1.567E-04 1.051E-04 -8.367E+00 1.676E+02
TOTAL HARMONIC DISTORTION = 7.694897E+00 PERCENT
Рис. 17.21. Выходной файл, показывающий гармонический состав от первой до пятой гармоники
Данный текст является ознакомительным фрагментом.