Основная и вторая гармоники
Основная и вторая гармоники
Начнем с простой схемы, позволяющей рассмотреть основные концепции, которые мы используем в дальнейшем для более сложных схем. На рис. 7.1 показано входное напряжение VBX.p=1 В, это синусоидальная волна с частотой f=1 кГц и максимальным значением 1 В (действующим значением Vвх=?2). Чтобы обеспечить выходное напряжение, которое является нелинейной функцией входного, в качестве усилителя используется источник напряжения Е, управляемый напряжением (ИНУН). В этом примере зависимость выходного напряжения от входного отображается функцией
f(x) = 1 + х + х?.
Рис. 7.1. Схема с нелинейной связью входного и выходного напряжений
Эта функциональная связь отображается в команде Е c помощью полиномиальных коэффициентов. Общий вид полинома:
f(х) = k0 + k1х + k2х?.
Чтобы перейти к зависимости нашего примера, используем три последних числа команды ввода Е. Мы хотим провести гармонический анализ, чтобы увидеть, какие из гармоник присутствуют в выходном напряжении, но сначала попробуем определить, чего же мы должны ожидать.
Прежде чем перейти к разложению временных зависимостей в ряд Фурье, необходимо выполнить анализ для переходных процессов (программу transient analysis в PSpice).
Поэтому необходимо использовать обе команды .TRAN и .FOUR. Обычно выполняется анализ переходных процессов для полного периода основной частоты. В этом примере f=1 кГц; следовательно, Т=1/f=1 мс. Гармонический анализ отражает частотные компоненты вплоть до девятой гармоники. Для большинства целей этого должно быть более чем достаточно. Если показывать более высокие гармоники, они не будут иметь большого значения из-за накопления ошибки округления в результатах.
Чтобы дать более подробное описание входного напряжения VBX, используем форму sin для описания источника. Параметры sin(а, b, с,…) означают: а — постоянная составляющая, b — максимальное значение, с — частота, d — задержка, е — коэффициент затухания и f — фаза.
При включении во входной файл команды .FOUR производится гармонический анализ, дающий разложение в ряд Фурье для результатов анализа переходного процесса. Параметры для этой команды включают частоту основной гармоники и переменные, для которых будет получено разложение. В этом примере такими переменными будут периодические функции входного V(1) и выходного V(2) напряжений. Входной файл:
Fourier Analysis; Decomposition of Polynomial
Vin 1 0 sin(0 1 1000); аргументы для смещения, максимума и частоты
Rin 1 0 1MEG
Е 2 0 poly(1) 1,0 1 1 1; последние 3 значения для k0, k1, k2
Rout 2 0 1MEG
.TRAN 1us 1ms
.FOUR 1000 V(1) V(2)
.PROBE
.END
Проведите анализ, затем получите графики V(1) и (V)2. Убедитесь, что V(1) — точная копия входного напряжения VВХ. Выходное напряжение должно показать компоненту постоянного тока и сложную волну с максимумом в 3 В. Из теоретического изучения рядов Фурье можно заключить, что этот график напоминает периодическую волну, состоящую из основной и второй гармоник. Целесообразно распечатать копию этого графика для будущего изучения. На рис. 7.2 показаны эти графики.
Рис. 7.2. Графики напряжений v1 и v2 для схемы на рис. 7.1
Рассмотрим также выходной файл для этой схемы (рис. 7.3), на котором показаны следующие значения для напряжений узлов: V(1)=0 В и V(2)=1 В. Это означает, что хотя входной сигнал не имеет смещения, выходное напряжение имеет смещение V(2)=1 В.
На рис. 7.3 в таблице компонентов ряда Фурье для V(1) не все компоненты имеют реальные значения. Так, значение постоянной составляющей теоретически должно быть равно нулю, но анализ дает очень малое значение 3.5Е-10, не равное в точности нулю из-за накопления ошибки округления.
Fourier Analysis; Decomposition of Polynomial
Vin 1 0 sin(0 1 1000); arguments are offset, peak, and frequency
Rin 1 0 1MEG
E 2 0 poly(1) 1,0 1 1 1; last 3 1s are for k0, k1, k2
Rout 2 0 1MEG
.TRAN 1us 1ms
.FOUR 1000 V(1) V(2)
.PROBE
.END
NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE
( 1) 0.0000 ( 2) 1.0000
FOURIER COMPONENTS OF TRANSIENT RESPONSE V(1)
DC COMPONENT = 2.936647E-08
HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED
NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)
1 1.000E+03 1.000E+00 1.000E+00 1.115E-06 0.000E+00
2 2.000E+03 1.994E-08 1.994E-08 -9.308E+01 -9.308E+01
3 3.000E+03 7.381E-09 7.381E-09 -9.083E+01 -9.083E+01
4 4.000E+03 4.388E-09 4.388E-09 -8.993E+01 -8.993E+01
5 5.000Е+03 3.134Е-09 3.134Е-09 -9.107Е+01 -9.107Е+01
6 6.000E+03 1.525E-09 1.525E-09 -6.706E+01 -6.706E+01
7 7.000E+03 1.511E-09 1.511E-09 -1.392E+02 -1.392E+02
8 8.000E+03 1.237E-09 1.237E-09 -3.990E+01 -3.990E+01
9 9.000E+03 7.642E-10 7.642E-10 3.320E+01 3.320E+01
TOTAL HARMONIC DISTORTION = 2.208405E-06 PERCENT
FOURIER COMPONENTS OF TRANSIENT RESPONSE V(2)
DC COMPONENT = 1.500000E+00
HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED
NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)
1 1.000E+03 1.000E+00 1.000E+00 -2.888E-07 0.000E+00
2 2.000E+03 5.000E-01 5.000Е-01 -9.000E+01 -9.000E+01
3 3.000E+03 7.971E-08 7.971E-08 -1.546E+02 -1.546E+02
4 4.000E+03 5.126Е-08 5.126Е-08 -1.439E+02 -1.439E+02
5 5.000E+03 3.918E-08 3.918E-08 -1.420E+02 -1.420E+02
6 6.000E+03 3.327E-08 3.327E-08 -1.299E+02 -1.299E+02
7 7.000Е+03 3.606E-08 3.606E-08 -1.268Е+02 -1.268E+02
8 8.000E+03 2.889E-08 2.859E-08 -1.316E+02 -1.316E+02
9 9.000E+03 2.584E-08 2.584E-08 -1.189Е+02 -1.189Е+02
TOTAL HARMONIC DISTORTION = 4.999939E+01 PERCENT
Рис. 7.3. Выходной файл с результатами анализа схемы на рис. 7.1
Первая гармоника представляет собой основную гармонику при f=1 кГц. Показана амплитуда первой гармоники ряда Фурье и ее фаза 2.4Е-7 (тоже почти ноль). Если считать, что этот компонент выражен формулой
bnsin(nx),
то это означает, что b1=1, n=1, где индекс 1 соответствует основной частоте. Другие гармоники могут игнорироваться, так как их амплитуды на много порядков меньше основной гармоники. Именно основная гармоника отражена на графике V(1) в Probe, получена она из данных на рис. 7.3.
Другая таблица компонентов Фурье на рис. 7.3 относится к V(2). При просмотре различных гармоник обратите внимание, что имеется постоянная составляющая в 1,5 В. Почему 1,5 В? Составляющая k0=1 В дает только часть этого значения, остальные же 0,5 В связаны со второй гармоникой. Теория показывает, что при гармоническом искажении по второй гармонике в выходном напряжении кроме собственно второй гармоники с амплитудой b2 появляется и связанная с искажениями по второй гармонике постоянная составляющая со значением b0=b2. Амплитуда основной частоты в разложении равна b1=1 В, амплитуда второй гармоники b2=0,5 В, ее фазовый угол составляет -90°. Более высокие гармоники имеют намного меньшую величину и их можно не учитывать.
В качестве упражнения по гармоническому синтезу вы можете нарисовать отдельные гармоники и сложить их, чтобы предсказать результат, который вы получите в Probe для V(2). Не забудьте учесть постоянную составляющую и соответствующие амплитуды и фазы для основной и второй гармоник. После того как вы нарисуете результирующее колебание, вам, несомненно, будет приятно узнать, что PSpice может сделать эту нудную работу за вас.
Данный текст является ознакомительным фрагментом.