Двухфазные системы

Двухфазные системы

Проведем анализ двухфазной системы, скорее всего, для удовлетворения собственного любопытства, пользуясь тем, что его очень легко реализовать на PSpice. На рис. 2.45 приведена такая схема, где полные сопротивления нагрузки равны Z=(25+j50) Ом для каждой фазы.

Рис. 2.45. Двухфазная схема

Two-Phase System

V1 1 0 AC 120 0

V2 2 0 AC 120 -90

R1 1 3 0.10

R2 2 7 0.10

R3 0 5 0.10

RL1 3 4 25

RL2 7 6 25

L1 4 5 0.133H

L2 6 5 0.133H

.AC LIN 1 60HZ 60HZ

.PRINT AC V(3,5) VP(3,5)

.PRINT AC V(7,5) VP(7,5)

.PRINT AC I(RL1) IP(RL1)

.PRINT AC I(RL2) IP(RL2)

.PRINT AC I(R3) IP(R3)

.OPT NOPAGE

.END

**** AC ANALYSIS TEMPERATURE = 27.000 DEG С

FREQ      V(3,5)    VP(3,5)

6.000E+01 1.200E+02 2.284E-01

FREQ      V(7,5)     VP(7,5)

6.000E+01 1.196E+02 -8.986E+01

FREQ      I(RL1)     IP(RL1)

6.000E+01 2.142E+00 -6.327E+01

FREQ      I(RL2)     IP(RL2)

6.000E+01 2.135E+00 -1.534E+02

FREQ      I(R3)     IP(R3)

6.000E+01 3.022E+00 7.178E+01

Рис. 2.46. Выходной файл с результатами анализа схемы на рис. 2.45

При частоте 60 Гц, реактивное сопротивление 50 Ом соответствует индуктивности L=0,133 Гн. Входной файл включен в рис. 2.46, который показывает выходные напряжения и токи. Фазные напряжения на нагрузке имеют почти одинаковые значения (120 В) и сдвинуты приблизительно на 90°. Линейные токи I(RL1) и I(RL2) также имеют почти равные значения (2,15 А) и сдвинуты приблизительно на 90°. Обратите внимание на ток I(RL1), сдвинутый на угол -63,27°, который является также фазовым углом для полного сопротивления нагрузки. Ток нейтрали I(R3) более чем в два раза превышает линейные токи:

Z = R + jXL = 25 + j50 = 55,9?63,4°Ом.

Нарисуйте векторную диаграмму, показав фазные напряжения на нагрузке и каждый из трех линейных токов.

Интересно посмотреть, что получится, если увеличить сопротивление в каждой линии. Установим для R1, R2 и R3 значения сопротивлений в 10 Ом и выполним моделирование снова. Новый выходной файл показан на рис. 2.47. Обратите внимание, что V(3,5)=111?19,3° и V(7,5)=89,1?-82,2°. Напряжения теперь несбалансированы и сдвинуты на 105,5°. Линейные токи также несбалансированы, и снова ток нейтрали больше, чем любой из двух других токов.

Two-Phase System with Large Values of Line Resistance

V1 1 0 AC 120 0

V2 2 0 AC 120 -90

R1 1 3 10

R2 2 7 10

R3 0 5 10

RL1 3 4 25

RL2 7 6 25

L1 4 5 0.133H

L2 6 5 0.133H

.AC LIN 1 60HZ 60HZ

.PRINT AC V(3,5) VP(3,5)

.PRINT AC V(7,5) VP(7,5)

.PRINT AC I(RL1) IP(RL1)

.PRINT AC I(RL2) IP(RL2)

.PRINT AC I(R3) IP(R3)

.OPT NOPAGE

.END

**** AC ANALYSIS TEMPERATURE = 27.000 DEG С

FREQ      V(3,5)    VP(3,5)

6.000E+01 1.110E+02 1.926E+01

FREQ      V(7,5)     VP(7,5)

6.000E+01 8.909E+01 -8.220E+01

FREQ      I(RL1)     IP(RL1)

6.000E+01 1.981E+00 -4.424E+01

FREQ      I(RL2)     IP(RL2)

6.000E+01 1.590E+00 -1.457E+02

FREQ      I(R3)     IP(R3)

6.000E+01 2.280E+00 9.265E+01

Рис. 2.47. Выходной файл с результатами анализа схемы на рис. 2.45 при увеличенных сопротивлениях

Данный текст является ознакомительным фрагментом.