Энергия ЭМИ
Рассмотрим ЭМИ следующих спектральных диапазонов:
электромагнитное ионизирующее излучение с длиной волны от 5.10~4 до 0,01 нм (у-излучение) и от 0,01 до 6 нм (рентгеновское излучение);
Ультрафиолетовое (УФ) излучение от 0,05 до 0,4 мкм;
Видимое излучение от 0,4 до 0,77 мкм; инфракрасное (ИК) излучение от 0,77 до 1000 мкм; сверхвысокочастотное (СВЧ) излучение от 1 мм до 3м.
Специфика воздействия ЭМИ в основном объясняется различными значениями энергий квантов соответствующих частот. Энергия кванта WKB связана с частотой излучения ? следующей зависимостью: Wm = ?f,
где h – постоянная Планка, равная 6,62—10~34 Дж-с. Если энергию кванта измерять в электрон-вольтах, а длину волны излучения ? в нанометрах, то имеем преобразование:
WKB=1240/?, 1 ГэВ = 109 эВ, 1 эВ = 1,6*10—12 эрг = 1,6*1019 Дж.
Минимальная энергия кванта, способная вызвать ионизацию воды и атомов кислорода, водорода, азота и углерода, составляет 12 … 15 эВ [66]. Энергию кванта 12 эВ можно рассматривать как нижний предел ионизации для биологических систем. Этой энергии соответствует Х,= 100 нм. Квант электромагнитного излучения, в зависимости от энергии, может вызвать ядерные превращения, ионизацию атомов вещества или возбуждение электронных оболочек. В биологических системах поглощение квантов ЭМИ неионизирующих уровней энергии может приводить к диссоциации молекул при передаче энергии электронам связи, рассеянию энергии возбуждения в виде флуоресцентного или фосфоресцентного излучения, к образованию свободных радикалов, к превращению энергии излучения в энергию колебательного, вращательного, поступательного движения молекул, т. е. в тепло.
Биологический эффект воздействия ЭМИ на живые организмы зависит как от энергии квантов ЭМИ, так и от глубины проникновения излучения в систему, способности участвующих в процессе взаимодействия молекул испытывать в результате поглощения энергии химические превращения, а также от других физико-биологических факторов. Важное значение имеют энергия и мощность излучения.
Характерная энергия объединения оценивается по порядку величины как 102 ГэВ (ГэВ – это сокращенное от гигаэлектрон-вольт, 1 ГэВ = 109 эВ,
1 эВ = 1,6*10—12 эрг = 1,6*1019 Дж). Для сравнения отметим, что характерная энергия электрона в основном состоянии атома водорода порядка 10—8 ГэВ, характерная энергия связи атомного ядра порядка 10—2 ГэВ, характерная энергия связи твердого тела порядка 10—10 ГэВ. Таким образом, характерная энергия объединения электромагнитных и слабых взаимодействий огромна по сравнению с характерными энергиями в атомной и ядерной физике. По этой причине электромагнитное и слабое взаимодействия не проявляют в обычных физических явлениях своей единой сущности.
Общая картина разделения единого великого взаимодействия на отдельные сильное, слабое и электромагнитное взаимодействия выглядит следующим образом. При энергиях порядка 1015 ГэВ и выше существует единое взаимодействие. Когда энергия становится ниже 1015 ГэВ, сильное и электрослабое взаимодействия отделяются друг от друга и представляются как различные фундаментальные взаимодействия. При дальнейшем уменьшении энергии ниже 102 ГэВ происходит отделение слабого и электромагнитного взаимодействий. В результате на масштабе энергий, характерных для физики макроскопических явлений, три рассматриваемых взаимодействия выглядят как не имеющие единой природы.
Заметим теперь, что энергия 1015 ГэВ отстоит не так далеко от планковской энергии (11.1), при которой становятся существенными квантовогравитационные эффекты.
Данный текст является ознакомительным фрагментом.