11. Выбор предикторов

С практической точки зрения модель с меньшим количеством предикторов легче поддается толкованию, а для платных источников котировок может привести к уменьшению затрат. Статистически более привлекательно оценивать меньше параметров. Кроме того, что более важно, на некоторые модели могут негативно влиять не информативные предикторы.

Некоторые модели естественно стойкие к неинформативным предикторам. Модели, основанные на дереве, например, интуитивно проводят отбор предикторов. Например, если предиктор не используется ни в одном расщеплении во время построения дерева, уравнение предсказания функционально независимо от предиктора.

Важное различие, которое будет сделано в выборе предиктора, является различием контролируемых и безнадзорных методах (методы с учителем и без учителя). Если значение целевой переменной игнорируется во время устранения предикторов, то метод безнадзорный (без учителя). В каждом случае целевая переменная не зависит от фильтрования. Для контролируемых методов (с учителем) предикторы определенно выбраны с целью увеличения точности или поиска такого подмножества предикторов, которое уменьшает сложность модели. Здесь значения целевой переменной обычно используется для определения величины значимости предикторов.

Проблемы, связанные с каждым типом выбора предиктора, очень отличаются, и имеются большие объемы литературы по этой теме.

Данный текст является ознакомительным фрагментом.