10.3. Другие подходы

Алгоритм Relief является универсальным методом для определения величины значимости предиктора. Первоначально разрабатывался для проблем классификации с двумя классами, но был расширен для решения широкого диапазона проблем. Алгоритм Relief может упорядочить непрерывные предикторы, фиктивные переменные, а также может опознать нелинейные отношения между предикторами и целевой переменной. Алгоритм Relief использует случайно выбранные наблюдения и их ближайших соседей для оценки каждого предиктора в отдельности.

Для определенного предиктора алгоритм пытается определить расстояние между классами в изолированных пространствах данных. Для выбранных в произвольном порядке наблюдений из набора данных обучения алгоритм находит самые близкие наблюдения из обоих классов (названный «хитом» и «пробелом»). Для каждого предиктора вычисляется разность мер значимости между случайным наблюдением и удачами и неудачами.

Данный текст является ознакомительным фрагментом.