6.3. Регрессия частично наименьших квадратов (PLS)
В случае коррелированности предикторов нельзя непосредственно использовать обычный линейный подход для поиска оптимальной дискриминантной функции. Эта же проблема существует и при попытке удалить чрезвычайно коррелированные предикторы в рамках анализа главных компонент РСА. Если существуют сложные отношения корреляции в данных, то PCA может использоваться для уменьшения размерности пространства предикторов. Однако PCA может не идентифицировать комбинации предикторов, которые оптимально разделяют выборки на группы с учетом целевой переменной. Цель РСA состоит в поиске подпространства, которое с максимальной меж-внутри групповой изменчивостью. Однако далеко не факт, что выделенные факторы оптимальным образом будут связаны и целевой переменной, поскольку задача метода РСА состоит в объяснении связей предикторов. В этих случаях рекомендуется использовать регрессию частично наименьших квадратов PLS.
Регрессия PLS решает задачу формирования небольшого количества новых предикторов, в пространстве которых связь между зависимой переменной и предикторами достигает максимального значения.
Данный текст является ознакомительным фрагментом.