4.2. Линейные регрессионные модели

Когда мы говорим о линейных моделях, то имеется в виду, что модели являются линейными в параметрах.

При оценке моделей оцениваются их параметры так, чтобы сумма квадратов ошибок или функция суммы квадратов ошибок были минимизированы. Среднеквадратичная ошибка (MSE) может быть разделена на компоненты не уменьшаемого изменения, смещения модели и дисперсии модели.

Явное преимущество линейных моделей состоит в легкости их толкования.

Другое преимущество этих видов моделей состоит в том, что их математический характер позволяет вычислить стандартные ошибки коэффициентов при условии, что делаются определенные предположения о распределениях остатков модели. Затем эти стандартные ошибки могут использоваться для оценки статистической значимости каждого предиктора в модели.

В то время как линейные модели типа регрессии легко поддаются толкованию, их использование может быть ограничено. Во-первых, эти модели состоятельны, если отношение между предикторами и откликом движется вдоль гиперплоскости. Например, при одном предикторе модель будет состоятельной, если отношение между предиктором и откликом двигалось вдоль прямой линии. С большим количеством предикторов отношение должно двигаться близко к плоской гиперплоскости. Если есть криволинейное отношение между предикторами и откликом (например, такое как квадратное, кубическое взаимодействия среди предикторов), то линейные регрессионные модели могут быть расширены с дополнительными предикторами, которые являются функциями исходных предикторов в попытке получить эти отношения. Однако нелинейные отношения между предикторами и откликом не могут быть соответственно получены этими моделями.

Данный текст является ознакомительным фрагментом.