Глава 8
Глава 8
8.1. Да. Функция read возвращает 4096 байт данных, а функция recvfrom возвращает 2048 байт (первую из двух дейтаграмм). Функция recvfrom на сокете дейтаграмм никогда не возвращает больше одной дейтаграммы, независимо от того, сколько приложение запрашивает.
8.2. Если протокол использует структуры адреса сокета переменной длины, clilen может быть слишком длинным. В главе 15 будет показано, что это не вызывает проблем со структурами адреса доменного сокета Unix, но корректным решением будет использовать для функции sendto фактическую длину, возвращаемую функцией recvfrom.
8.4. Запуск программы ping с такими параметрами позволяет просмотреть ICMP-сообщения, получаемые узлом, на котором она запущена. Мы используем уменьшенное количество отправляемых пакетов вместо обычного значения 1 пакет в секунду, только чтобы уменьшить объем выводимой на экран информации. Если запустить наш UDP-клиент на узле solaris, указав IP-адрес сервера 192.168.42.1, а затем запустить программу ping, получим следующий вывод:
aix % ping -v -I 60 127.0.0.1
PING 127.0.0.1: {127.0.0.1}: 56 data bytes
64 bytes from 127 0.0.1: icmp_seq=0 ttl=255 time=0 ms
36 bytes from 192.168.42.1: Destination Port Unreachable
Vr HL TOS Len ID Fig Off TTL Pro cks Src Dst Data
4 5 00 0022 0007 0 0000 1e 11 c770 192 168 42.2 192.168.42.1
UDP: from port 40645. to port 9877 (decimal)
ПРИМЕЧАНИЕ
He все версии ping выводят сообщения об ICMP-ошибках, даже если задан параметр -v.
8.5. Прослушиваемый сокет может иметь приемный буфер определенного размера, но прослушиваемым TCP-сокетом данные никогда не принимаются. Большинство реализаций не выделяют заранее память под буферы отправки и приема. Размеры буферов сокета, определяемые параметрами SO_SNDBUF и SO_RCVBUF, являются предельными значениями для соответствующего сокета.
8.6. Запустим программу sock с параметром -u (использовать UDP) и параметром -l (определяет локальный адрес и порт) на многоинтерфейсном узле freebsd.
freebsd % sock -u -l 12.106.32.254.4444 192.168.42.2 8888
hello
Локальный IP-адрес подключен к Интернету (см. рис. 1.7), но чтобы достичь получателя, дейтаграмма должна выйти через другой интерфейс. Наблюдая за сетью с помощью программы tcpdump, мы увидим, что IP-адрес отправителя, связанный с клиентом, не является адресом исходящего интерфейса.
14:28:29.614846 12.106.32.254.444 > 192.168.42.2.8888. udp 6
14:28:29.615255 192.168.42.2 > 12 106.32.254: icmp: 192.168 42.2
udp port 8888 unreachable
8.7. Использование функции printf на стороне клиента приведет к возникновению задержки между отправками дейтаграмм, что позволит серверу получать большее количество дейтаграмм. Использование функции printf на стороне сервера приведет к тому, что сервер будет терять большее количество дейтаграмм.
8.8. Наибольший размер IPv4-дейтаграммы составляет 65 535 байт и ограничивается 16-разрядным полем полной длины, показанным на рис. А.1. IP-заголовок требует 20 байт, UDP-заголовок — 8 байт, и для пользовательских данных остается не более 65 507 байт. В IPv6 (без поддержки джумбограмм) размер IP-заголовка составляет 40 байт, и под пользовательские данные отводится 65 487 байт.
В листинге Д.3 приведена новая версия dg_cli. Если забыть установить размер буфера отправки, Беркли-ядра возвратят из функции sendto ошибку EMSGSIZE, поскольку размер буфера отправки сокета обычно меньше, чем максимально возможный размер UDP-дейтаграммы (чтобы убедиться в этом, выполните упражнение 7.1).
Листинг Д.3. Запись дейтаграммы UDP/IPv4 максимального размера
//udpcliserv/dgclibig.c
1 #include "unp.h"
2 #undef MAXLINE
3 #define MAXLINE 65507
4 void
5 dg_cli(FILE *fp, int sockfd, const SA *pservaddr, socklen_t servlen)
6 {
7 int size;
8 char sendline[MAXLINE], recvline[MAXLINE + 1];
9 ssize_t n;
10 size = 70000;
11 Setsockopt(sockfd, SOL_SOCKET, SO_SNDBUF, &size, sizeof(size));
12 Setsockopt(sockfd, SOL_SOCKET, SO_RCVBUF, &size, sizeof(size));
13 Sendto(sockfd, sendline, MAXLINE, 0, pservaddr, servlen);
14 n = Recvfrom(sockfd, recvline, MAXLINE, 0, NULL, NULL);
15 printf("received %d bytes ", n);
16 }
Но если установить размеры буферов сокета клиента, как показано в листинге Д.3, и запустить программу, сервер ничего не возвратит. С помощью программы tcpdump можно убедиться, что клиентская дейтаграмма отправляется серверу, но если в сервер поместить функцию printf, вызов функции recvfrom не возвратит дейтаграмму. Проблема заключается в том, что приемный буфер UDP-сокета сервера меньше, чем посланная нами дейтаграмма, поэтому дейтаграмма отбрасывается и не доставляется на сокет. В системах BSD/OS это можно проверить, запустив программу netstat -s и проверив счетчик, указывающий количество дейтаграмм, отброшенных из-за переполнения буферов сокета (dropped due to full socket buffers), до и после получения нашей длинной дейтаграммы. Решением является модификация сервера путем задания размеров буферов приема и отправки сокета.
В большинстве сетей дейтаграмма длиной 65 535 байт фрагментируется. Как отмечалось в разделе 2.9, IP-уровнем должен поддерживаться размер буфера для сборки фрагментов, равный всего лишь 576 байт. Поэтому некоторые узлы не получат дейтаграмму максимального размера, посылаемую в данном упражнении. Кроме того, во многих Беркли-реализациях, включая 4.4BSD-Lite2, имеется ошибка, связанная со знаковыми типами данных, которая не позволяет UDP принимать дейтаграммы больше, чем 32 767 байт (см. строка 95, с. 770 [128]).
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Глава 17 DNS
Глава 17 DNS DNS – это Доменная Система Имен (Domain Name System). DNS преобразует символические имена машин в IP-адреса и наоборот – из IP-адреса в символическое имя. Для чего это нужно? Во-первых, человеку легче запомнить осмысленное имя – типа vasya.ru чем 195.66.195.42, а для компьютера проще
Глава 20 FTP
Глава 20 FTP Эта глава посвящена протоколу FTP, настройке сервера FTP, проблемам конфигурации и безопасности сервера.Протокол FTPПротокол FTP (File Transfer Protocol, протокол передачи файлов) предназначен для передачи файлов в сети Интернет. Этот протокол был разработан на заре эры
ГЛАВА 14
ГЛАВА 14 Переменные среды и интерпретатора shellЧтобы продуктивно работать с интерпретатором shell, нужно уметь управлять переменными этого интерпретатора. Переменными интерпретатора shell являются наименования, которым присваиваются значения. В качестве значений может
ГЛАВА 15
ГЛАВА 15 Использование кавычекВ главе 14 обсуждались методы работы с переменными и операции подстановки. Чаще всего ошибки в использовании кавычек возникают при выполнении подстановок переменных в сценариях. Кавычки оказывают существенное влияние на формирование
ГЛАВА 16
ГЛАВА 16 Понятие о shell–сценарииВ shell–сценарий может включаться одна или несколько команд; здесь нет общепринятых правил. Зачем же создавать целый сценарий ради двух–трех команд? Все зависит от предпочтений пользователя.В этой главе рассматриваются следующие
ГЛАВА 17
ГЛАВА 17 Проверка условийПри создании сценария уточняется идентичность строк, права доступа к файлу или же выполняется проверка численных значений. На основе результатов проверки предпринимаются дальнейшие действия. Проверка обычно осуществляется с помощью команды test.
ГЛАВА 18
ГЛАВА 18 Управляющие конструкцииВсе функциональные сценарии должны предлагать возможности по выбору возможных вариантов. При определенных условиях сценарии должны выполнять обработку списков. Этим вопросам посвящена настоящая глава. Кроме того, в ней описывается
ГЛАВА 19
ГЛАВА 19 Функции интерпретатора shellДо сих пор весь программный код сценариев данной книги выполнялся последовательно от начала до конца программы. Подобный подход неплох, но при этом некоторые фрагменты кода, рассмотренного в наших примерах, дублируются в пределах
ГЛАВА 21
ГЛАВА 21 Создание экранного выводаС помощью shell–сценариев можно создавать профессионального вида экраны, позволяющие реализовать интерактивное взаимодействие пользователя с системой. Для этого достаточно располагать цветным монитором и использовать команду tput.В
ГЛАВА 22
ГЛАВА 22 Создание экранного вводаКогда речь идет об экранном вводе, или вводе данных, подразумевают ввод информации (в нашем случае с помощью клавиатуры), а затем — проверку достоверности введенных данных. Если данные удовлетворяют неким критериям, они
ГЛАВА 23
ГЛАВА 23 Отладка сценариевОдной из самых сложных задач при создании shell–сценариев является их отладка. Желательно, чтобы пользователь, выполняющий эту задачу, получил консультации на данном этапе. Чтобы избежать распространенных ошибок, достаточно следовать указанному
ГЛАВА 24
ГЛАВА 24 Встроенные команды интерпретатора shellВ предыдущих главах нам уже встречались конструкции, встроенные в интерпретатор shell Напомним, что речь идет о командах, которые не находятся в каталоге /bin или usr/bin, а встроены в интерпретатор Bourne shell. Скорость выполнения
ГЛАВА 25
ГЛАВА 25 Дальнейшее изучение конструкции "документ здесь"При рассмотрении стандартного потока ввода и вывода, а также циклов while уже обсуждалась конструкция "документ здесь". Описывались методика пересылки электронной почты и способы формирования экранов меню, но
ГЛАВА 26
ГЛАВА 26 Утилиты интерпретатора shellВ этой главе рассматриваются следующие темы: • создание датируемых имен файлов и временных файлов; • сигналы; • команда trap и способы перехвата сигналов; • команда eval; • команда
ГЛАВА 28
ГЛАВА 28 Сценарии уровня выполненияЕсли при загрузке системы вам нужно автоматически запустить приложение, службу или сценарий либо корректно завершить их работу при перезапуске системы, то необходимо создать сценарий уровня выполнения. Почти все варианты системы Linux, а
ГЛАВА 29
ГЛАВА 29 Сценарии cgiВ настоящее время, когда практически на каждом ПК установлен Web–сервер, глава, посвященная сценариям cgi, органически вписывается в книгу по shell–программированию.В главе будут рассмотрены следующие темы: • базовые сценарии cgi; • использование