Б.4. Переход на IPv6: 6to4

Б.4. Переход на IPv6: 6to4

Механизм перехода 6to4 (6на4) полностью описан в документе «Соединение доменов IPv6 через облака IPv4» (RFC 3056 [17]). Это метод динамического создания туннелей, подобных изображенному на рис. Б.2. В отличие от предыдущих механизмов динамического создания туннелей, которые требовали наличия у всех узлов адресов IPv4, а также явного задания механизма туннелирования, 6to4 реализует туннелирование исключительно через маршрутизаторы. Это упрощает конфигурацию и позволяет централизованно устанавливать политику безопасности. Кроме того, появляется возможность совмещать функциональность 6to4 с типичной функциональностью трансляции сетевых адресов и межсетевой защиты (например, это может быть сделано на устройстве NAT, расположенном на стороне клиента).

Адреса 6to4 лежат в диапазоне 2002/16. В следующих четырех байтах адреса записывается адрес IPv4 (рис. Б.3). 16-разрядный префикс 2002 и 32-разрядный адрес IPv4 создают общий 48-разрядный идентификатор. Для идентификатора подсети, идущего перед 64-разрядным идентификатором интерфейса, остается 2 байта. Например, нашему узлу freebsd с адресом IPv4 12.106.32.254 соответствует префикс 2002:c6a:20fe/48.

Рис. Б.3. Адреса 6to4

Преимущество 6to4 перед 6bone состоит в том, что туннели, формирующие инфраструктуру, образуются автоматически. Для их создания не требуется предварительное конфигурирование. Сайт, использующий 6to4, настраивает основной маршрутизатор на известный адрес передачи наиболее подходящему узлу (anycast) IPv4 192.88.99.1 (RFC 3068 [48]). Он соответствует адресу IPv6 2002: :с058:6301::. Маршрутизаторы инфраструктуры IPv6, готовые действовать в качестве шлюзов 6to4, объявляют о маршруте к сети 2002/16 и отправляют упакованный трафик на адрес IPv4, скрытый внутри адреса 6to4. Такие маршрутизаторы могут быть локальными, региональными или глобальными в зависимости от областей действия их маршрутов.

Смысл виртуальных сетей состоит в том, чтобы постепенно исчезнуть с течением времени, когда промежуточные маршрутизаторы обретут требуемую функциональность (в частности, способность работать с IPv6).

Поделитесь на страничке

Следующая глава >

Похожие главы из других книг

8.1.3. Протокол IPv6

Из книги Linux-сервер своими руками автора Колисниченко Денис Николаевич

8.1.3. Протокол IPv6 Думаю, что основной момент настройки понятен, и теперь переходим к протоколу IPv6. Схема 32-разрядной адресации протокола IPv4 привела к дефициту IP-адресов. В новой версии протокола IP (IPv6, ранее именовавшегося IPng — IP next generation) адрес состоит из 16-ти октетов и


22.2 Обзор IPv6

Из книги TCP/IP Архитектура, протоколы, реализация (включая IP версии 6 и IP Security) автора Фейт Сидни М

22.2 Обзор IPv6 Протокол IPv6 имеет следующие характеристики:? Введен 128-разрядный адрес (16 октетов), который иерархически структурирован для упрощения делегирования прав выделения адресов и маршрутизации.? Упрощен главный заголовок IP, но определены многие необязательные


22.4 Адреса IPv6

Из книги Сетевые средства Linux автора Смит Родерик В.

22.4 Адреса IPv6 Адреса IPv6 имеют длину 16 октетов (128 бит). Для записи адресов используется компактная (хотя и уродливая) нотация. Адреса представлены как 8 шестнадцатеричных чисел, разделенных двоеточиями. Каждое шестнадцатеричное число представляет 16 бит.


22.6 Формат заголовка IPv6

Из книги Разработка приложений в среде Linux. Второе издание автора Джонсон Майкл К.

22.6 Формат заголовка IPv6 Основной заголовок очень прост (см. рис. 22.2) и имеет немного полей: Version Версия. Равна 6 для IP следующего поколения. Priority Приоритет. Дифференцирует конкретное взаимодействие из общего трафика или определяет последовательность отбрасывания во время


22.7 Дополнительные заголовки IPv6

Из книги UNIX: разработка сетевых приложений автора Стивенс Уильям Ричард

22.7 Дополнительные заголовки IPv6 Использование дополнительных заголовков (extension header) — это прогрессивная идея, позволяющая последовательно добавлять в IP версии 6 новые функциональные возможности.Напомним, что в заголовке IP версии 4 поле протокола служит для идентификации


22.8.3 Адреса интерфейсов IPv6

Из книги автора

22.8.3 Адреса интерфейсов IPv6 Каждый интерфейс версии 6 имеет список соответствующих ему адресов. Как минимум, список содержит уникальный адрес локальной связи (link local address), имеющий формат: 1111111010 (10 бит) 00…00 Уникальный адрес технологии связи Каждому узлу необходим способ


22.10 Переход на IPv6

Из книги автора

22.10 Переход на IPv6 IP широко распространен во всем мире. Однако нельзя требовать, что бы все одновременно перешли на версию 6. Этот переход должен быть постепенным:? Узлы версии 6 должны взаимодействовать с узлами версии 4.? От организаций нельзя требовать отказа от их


Опции поддержки IPv6

Из книги автора

Опции поддержки IPv6 Работа Internet обеспечивается за счет протоколов семейства TCP/IP, в частности, для передачи пакетов используется протокол IP (IPv4). К сожалению, на сегодняшний день уже невозможно игнорировать тот факт, что версия IPv4 устарела. Для представления IP-адреса в IPv4


17.5.3. Адресация IPv6

Из книги автора

17.5.3. Адресация IPv6 В IPv6 используется тот же самый кортеж (локальный хост, локальный порт, удаленный хост, удаленный порт), что и в IPv4, и одни и те же номера портов (16-битные значения).IPv6-адреса локального и удаленного хостов являются 128-битными (16-байтовыми) числами вместо


7.8. Параметры сокетов IPv6

Из книги автора

7.8. Параметры сокетов IPv6 Эти параметры сокетов обрабатываются IPv6 и имеют аргумент level, равный IPPROTO_IPV6. Мы отложим обсуждение пяти параметров сокетов многоадресной передачи до раздела 21.6. Отметим, что многие из этих параметров используют вспомогательные данные с функцией


11.9. Функция getaddrinfo: IPv6

Из книги автора

11.9. Функция getaddrinfo: IPv6 Стандарт POSIX определяет как getaddrinfo, так и возвращаемые этой функцией данные для протоколов IPv4 и IPv6. Отметим следующие моменты, прежде чем свести возвращаемые значения воедино в табл. 11.3.? Входные данные функции getaddrinfo могут относиться к двум различным


22.8. Информация о пакетах IPv6

Из книги автора

22.8. Информация о пакетах IPv6 IPv6 позволяет приложению определять до пяти характеристик исходящей дейтаграммы:? IPv6-адрес отправителя;? индекс интерфейса для исходящих дейтаграмм;? предельное количество транзитных узлов для исходящих дейтаграмм;? адрес следующего


22.9. Управление транспортной MTU IPv6

Из книги автора

22.9. Управление транспортной MTU IPv6 IPv6 предоставляет приложениям средства для управления механизмом обнаружения транспортной MTU (раздел 2.11). Значения по умолчанию пригодны для подавляющего большинства приложений, однако специальные программы могут настраивать процедуру


27.4. Заголовки расширения IPv6

Из книги автора

27.4. Заголовки расширения IPv6 Мы не показываем никаких параметров в заголовке IPv6 на рис. А.2 (который всегда имеет длину 40 байт), но следом за этим заголовком могут идти заголовки расширения[7] (extension headers).1. Параметры для транзитных узлов (hop-by-hop options) должны следовать


А.3. Заголовок IPv6

Из книги автора

А.3. Заголовок IPv6 На рис. А.2 показан формат заголовка IPv6 (RFC 2460 [27]). Рис. А.2. Формат заголовка IPv6? Значение 4-разрядного поля номера версии (version) равно 6. Данное поле занимает первые 4 бита первого байта заголовка (так же как и в версии IPv4, см. рис. А.1), поэтому если получающий стек


А.5. Адресация IPv6

Из книги автора

А.5. Адресация IPv6 Адреса IPv6 содержат 128 бит и обычно записываются как восемь 16-разрядных шестнадцатеричных чисел. Старшие биты 128-разрядного адреса обозначают тип адреса (RFC 3513 [44]). В табл. А.4 приведены различные значения старших битов и соответствующие им типы