10.2. Потоковый эхо-сервер SCTP типа «один-ко-многим»: функция main

10.2. Потоковый эхо-сервер SCTP типа «один-ко-многим»: функция main

Наши клиент и сервер SCTP вызывают функции в последовательности, представленной на рис. 9.2. Код последовательного сервера представлен в листинге 10.1[1].

Листинг 10.1. Потоковый эхо-сервер SCTP

//sctp/sctpserv01.c

 1 #include "unp.h"

 2 int

 3 main(int argc, char **argv)

 4 {

 5  int sock_fd, msg_flags;

 6  char readbuf[BUFFSIZE];

 7  struct sockaddr_in servaddr, cliaddr;

 8  struct sctp_sndrcvinfo sri;

 9  struct sctp_event_subscribe evnts;

10  int stream_increment=1;

11  socklen_t len;

12  size_t rd_sz;

13  if (argc == 2)

14   stream_increment = atoi(argv[1]);

15  sock_fd = Socket(AF_INET, SOCK_SEQPACKET, IPPROTO_SCTP);

16  bzero(&servaddr, sizeof(servaddr));

17  servaddr.sin_family = AF_INET;

18  servaddr.sin_addr.s_addr = htonl(INADDR_ANY);

19  servaddr.sin_port = htons(SERV_PORT);

20  Bind(sock_fd, (SA*)&servaddr, sizeof(servaddr));

21  bzero(&evnts, sizeof(evnts));

22  evnts.sctp_data_io_event = 1;

23  Setsockopt(sock_fd, IPPROTO_SCTP, SCTP_EVENTS, &evnts, sizeof(evnts));

24  Listen(sock_fd, LISTENQ);

25  for (;;) {

26   len = sizeof(struct sockaddr_in);

27   rd_sz = Sctp_recvmsg(sock_fd, readbuf, sizeof(readbuf),

28    (SA*)&cliaddr, &len, &sri, &msg_flags);

29   if (stream_increment) {

30    sri.sinfo_stream++;

31    if (sri.sinfo_stream >=

32     sctp_get_no_strms(sock_fd, (SA*)&cliaddr, len))

33     sri.sinfo_stream = 0;

34   }

35   Sctp_sendmsg(sock_fd, readbuf, rd_sz,

36   (SA*)&cliaddr, len,

37   sri.sinfo_ppid,

38   sri.sinfo_flags, sri.sinfo_stream, 0, 0);

39  }

40 }

Настройка приращения номера потока

13-14 По умолчанию наш сервер отвечает клиенту через поток, номер которого на единицу больше номера потока, по которому было получено сообщение. Если приложению в строке вызова передается целочисленный аргумент, он интерпретируется как значение флага stream_increment, с помощью которого приращение номера потока можно отключить. Мы воспользуемся этим параметром командной строки, когда будем говорить о блокировании в разделе 10.5.

Создание сокета SCTP

15 Создается сокет SCTP типа «один-ко-многим».

Связывание с адресом

16-20 Структура адреса сокета Интернета заполняется универсальным адресом (INADDR_ANY) и номером заранее известного порта сервера SERV_PORT. Связывание с универсальным адресом означает, что конечная точка SCTP будет использовать все доступные локальные адреса для всех создаваемых ассоциаций. Для многоинтерфейсных узлов это означает, что удаленная конечная точка сможет устанавливать ассоциации и передавать пакеты на любой локальный интерфейс. Выбор номера порта SCTP основывался на рис. 2.10. Обратите внимание, что ход рассуждений для сервера тот же, что и в одном из предшествовавших примеров в разделе 5.2.

Подписка на уведомления

21-23 Сервер изменяет параметры подписки на уведомления для сокета SCTP. Сервер подписывается только на событие sctp_data_io_event, что позволяет ему получать структуру sctp_sndrcvinfo. По ее содержимому сервер сможет определять номер потока полученного сообщения.

Разрешение установки входящих ассоциаций

24 Сервер разрешает устанавливать входящие ассоциации, вызывая функцию listen. Затем управление передается главному циклу.

Ожидание сообщения

26-28 Сервер инициализирует размер структуры адреса сокета клиента, после чего блокируется в ожидании сообщения от какого-либо удаленного собеседника.

Увеличение номера потока

29-34 Сервер проверяет состояние флага stream_increment и определяет, нужно ли увеличивать номер потока. Если флаг установлен (никакие аргументы в командной строке не передавались), сервер увеличивает номер потока, по которому было получено сообщение, на единицу. Если полученное число достигает предельного количества потоков (получаемого вызовом sctp_get_no_strms), сервер сбрасывает номер потока в 0. Функция sctp_get_no_strms в листинге не приведена. Она использует параметр SCTP_STATUS (см. раздел 7.10) для определения согласованного количества потоков.

Отправка ответа

35-38 Сервер отсылает сообщения, используя идентификатор протокола, флаги и номер потока (который, возможно, был увеличен), хранящиеся в структуре sri.

Заметьте, что нашему серверу не нужны уведомления об установке ассоциаций, поэтому он отключает все события, которые привели бы к передаче сообщений в буфер сокета. Сервер полагается на сведения из структуры sctp_sndrcvinfo, а обратный адрес берет из переменной cliaddr. Этого оказывается достаточно для отправки эхо-ответа собеседнику через установленную им ассоциацию.

Программа работает до тех пор, пока пользователь не завершит ее передачей сигнала.

Поделитесь на страничке

Следующая глава >

Похожие главы из других книг

Отношения типа один-к-одному

Из книги Обработка баз данных на Visual Basic®.NET автора Мак-Манус Джеффри П

Отношения типа один-к-одному Предположим, в вашей базе данных есть таблицы, в которых хранится информация о сотрудниках и видах работ. Если каждому служащему назначается один вид работы, то отношение между сотрудниками и видами работ можно определить типом один-к-одному,


Отношения типа один-ко-многим

Из книги Системное программирование в среде Windows автора Харт Джонсон М

Отношения типа один-ко-многим Гораздо чаще, чем отношения типа один-к-одному, в базах данных используются отношения типа один-ко-многим, в которых каждая запись таблицы связана с одной или несколькими записями в другой таблице (или вообще не связана ни с какими записями). В


Отношения типа многие-ко-многим

Из книги C++ для начинающих автора Липпман Стенли

Отношения типа многие-ко-многим Отношение типа многие-ко-многим по сравнению с отношением один-ко-многим идет еще дальше. В качестве классического примера отношения типа многие-ко-многим можно привести отношение между студентами и классами. Каждый студент может иметь


Обобщенная функция Main

Из книги UNIX: разработка сетевых приложений автора Стивенс Уильям Ричард

Обобщенная функция Main Обозначение С-функции main с ее списком аргументов (argv[]) следует заменить макросом _tmain. В зависимости от определения символической константы _UNICODE макрос разворачивается либо до main, либо до wmain. _tmain определяется в заголовочном файле <tchar.h>, который


Функция main()

Из книги автора

Функция main() Задачей новой функции main(), которая вызывается SCM, является регистрация службы в SCM и запуск диспетчера службы (service control dispatcher). Для этого необходимо вызвать функцию StartServiceControlDispatcher, передав ей имя (имена) и точку (точки) входа одной или нескольких логических


5.2. Эхо-сервер TCP: функция main

Из книги автора

5.2. Эхо-сервер TCP: функция main Наши клиент и сервер TCP используют функции, показанные на рис. 4.1. Программа параллельного сервера представлена в листинге 5.1[1].Листинг 5.1. Эхо-сервер TCP (улучшенный в листинге 5.9)//tcpcliserv/tcpserv01.с 1 #include "unp.h" 2 int 3 main(int argc, char **argv) 4 { 5  int listenfd, connfd; 6  pid_t


5.4. Эхо-клиент TCP: функция main

Из книги автора

5.4. Эхо-клиент TCP: функция main В листинге 5.3 показана функция main TCP-клиента.Листинг 5.3. Эхо-клиент TCP//tcpcliserv/tcpcli01.c 1 #include "unp.h" 2 int 3 main(int argc, char **argv) 4 { 5  int sockfd; 6  struct sockaddr_in servaddr; 7  if (argc != 2) 8   err_quit("usage: tcpcli <Ipaddress>"); 9  sockfd = Socket(AF_INET, SOCK_STREAM, 0);10  bzero(&servaddr. sizeof(servaddr));11  servaddr.sin_family


8.3. Эхо-сервер UDP: функция main

Из книги автора

8.3. Эхо-сервер UDP: функция main Теперь мы переделаем нашу простую модель клиент-сервер из главы 5, используя UDP. Диаграмма вызовов функций в программах наших клиента и сервера UDP показана на рис. 8.1. На рис. 8.2 представлены используемые функции. В листинге 8.1[1] показана функция


8.5. Эхо-клиент UDP: функция main

Из книги автора

8.5. Эхо-клиент UDP: функция main Функция main клиента UDP показана в листинге 8.3.Листинг 8.3. Эхо-клиент UDP//udpcliserv/udpcli01.c 1 #include "unp.h" 2 int 3 main(int argc, char **argv) 4 { 5  int sockfd; 6  struct sockaddr_in servaddr; 7  if (argc != 2) 8   err_quit("usage: udpcli <Ipaddress>"); 9  bzero(&servaddr, sizeof(servaddr));10  servaddr.sin_family = AF_INET;11  servaddr.sin_port =


Сокет типа «один-к-одному»

Из книги автора

Сокет типа «один-к-одному» Данный тип сокета был разработан специально для облегчения переноса существующих приложений с TCP на SCTP. Его модель практически идентична описанной в главе 4. Существуют, конечно, некоторые отличия, о которых следует помнить (в особенности, при


Сокет типа «один-ко-многим»

Из книги автора

Сокет типа «один-ко-многим» Сокет типа «один-ко-многим» дает разработчику приложения возможность написать сервер, не использующий большого количества дескрипторов сокетов. Один дескриптор для такого сервера будет представлять несколько ассоциаций, подобно сокету UDP,


Глава 10 Пример SCTP-соединения клиент-сервер

Из книги автора

Глава 10 Пример SCTP-соединения клиент-сервер 10.1. Введение Воспользуемся некоторыми элементарными функциями из глав 4 и 9 для написания полнофункционального приложения SCTP с архитектурой клиент-сервер типа «один-ко-многим». Сервер из нашего примера будет аналогичен


23.2. Сервер типа «один-ко-многим» с автоматическим закрытием

Из книги автора

23.2. Сервер типа «один-ко-многим» с автоматическим закрытием Вспомните программу-сервер, которую мы написали в главе 10. Эта программа не отслеживала ассоциации. Сервер рассчитывал, что клиент самостоятельно закроет ассоциацию, удалив тем самым данные о ее состоянии.