Параметр сокета TCP_NODELAY

Параметр сокета TCP_NODELAY

Если этот параметр установлен, он отключает алгоритм Нагла (Nagle algorithm) (см. раздел 19.4 [111] и с. 858–859 [128]). По умолчанию этот алгоритм включен.

Назначение алгоритма Нагла — сократить число небольших пакетов в глобальной сети. Согласно этому алгоритму, если у данного соединения имеются неподтвержденные (outstanding) данные (то есть данные, которые отправил наш TCP и подтверждения которых он ждет), то небольшие пакеты не будут отправляться через соединение до тех пор, пока существующие данные не будут подтверждены. Под «небольшим» пакетом понимается любой пакет, меньший MSS. TCP будет по возможности всегда отправлять пакеты нормального размера. Таким образом, назначение алгоритма Нагла — не допустить, чтобы у соединения было множество небольших пакетов, ожидающих подтверждения.

Два типичных генератора небольших пакетов — клиенты Rlogin и Telnet, поскольку обычно они посылают каждое нажатие клавиши в отдельном пакете. В быстрой локальной сети мы обычно не замечаем действия алгоритма Нагла с этими клиентами, потому что время, требуемое для подтверждения небольшого пакета, составляет несколько миллисекунд — намного меньше, чем промежуток между вводом двух последовательных символов. Но в глобальной сети, где для подтверждения небольшого пакета может потребоваться секунда, мы можем заметить задержку в отражении символов, и эта задержка часто увеличивается при включении алгоритма Нагла.

Рассмотрим следующий пример. Мы вводим строку из шести символов hello! либо клиенту Rlogin, либо клиенту Telnet, промежуток между вводом символов составляет точно 250 мс. Время обращения к серверу (RTT) составляет 600 мс и сервер немедленно отправляет обратно отражение символа. Мы считаем, что сегмент ACK, подтверждающий получение клиентского символа, отправляется обратно клиенту с отражением символа, а сегменты ACK, которые клиент отправляет для подтверждения приема отраженного сервером символа, мы игнорируем. (Мы поговорим о задержанных сегментах ACK далее.) Считая, что алгоритм Нагла отключен, получаем 12 пакетов, изображенных на рис. 7.7.

Рис. 7.7. Шесть символов, отраженных сервером при отключенном алгоритме Нагла

Каждый символ отправляется в индивидуальном пакете: сегменты данных слева направо, а сегменты ACK справа налево.

Но если алгоритм Нагла включен (по умолчанию), у нас имеется 8 пакетов, показанных на рис. 7.8. Первый символ посылается как пакет, но следующие два символа не отправляются, поскольку у соединения есть небольшой пакет, ожидающий подтверждения. Эти пакеты отправляются, когда прошло 600 мс, то есть когда прибывает сегмент ACK, подтверждающий прием первого пакета, вместе с отражением первого символа. Пока второй пакет не будет подтвержден сегментом ACK в момент времени 1200, не будет отправлен ни один небольшой пакет.

Рис. 7.8. Пакеты, отправляемые при включенном алгоритме Нагла

Алгоритм Нагла часто взаимодействует с другим алгоритмом TCP: алгоритмом задержанного сегмента ACK (delayed ACK). Этот алгоритм заставляет TCP не отправлять сегмент ACK сразу же при получении данных — вместо этого TCP ждет в течение небольшого количества времени (типичное значение 50-200 мс) и только после этого отправляет сегмент ACK. Здесь делается расчет на то, что в течение этого непродолжительного времени появятся данные для отправки собеседнику, и сегмент ACK может быть вложен в пакет с этими данными. Таким образом можно будет сэкономить на одном сегменте TCP. Это обычный случай с клиентами Rlogin и Telnet, поэтому сегмент ACK клиентского символа вкладывается в отражение символа сервером.

Проблема возникает с другими клиентами, серверы которых не генерируют трафика в обратном направлении, в который может быть вложен сегмент ACK. Эти клиенты могут обнаруживать значительные задержки, поскольку TCP клиента не будет посылать никаких данных серверу, пока не истечет время таймера для задержанных сегментов ACK сервера. Таким клиентам нужен способ отключения алгоритма Нагла. Осуществить это позволяет параметр TCP_NODELAY.

Другой тип клиента, для которого нежелательно использование алгоритма Нагла и задержанных ACK TCP, — это клиент, отправляющий одиночный логический запрос своему серверу небольшими порциями. Например, будем считать, что клиент отправляет своему серверу 400-байтовый запрос, состоящий из 4 байт, задающих тип запроса, за которыми следуют 396 байт данных. Если клиент выполняет функцию write, отправляя 4 байт, и затем функцию write, отправляя остальные 396 байт, вторая часть не будет отправлена со стороны клиента, пока TCP сервера не подтвердит получение первых 4 байт. Кроме того, поскольку сервер не может работать с 4 байтами данных, пока не получит оставшиеся 396 байт, TCP сервера задержит сегмент ACK, подтверждающий получение 4 байт данных (то есть не будет данных от сервера клиенту, в которые можно вложить сегмент ACK). Есть три способа решить проблему с таким клиентом.

1. Использовать функцию writev (раздел 14.4) вместо двух вызовов функции write. Один вызов функции writev приводит к отправке только одного сегмента TCP в нашем примере. Это предпочтительное решение.

2. Скопировать 4 байт и 396 байт данных в один буфер и вызвать один раз функцию write для этого буфера.

3. Установить параметр сокета TCP_NODELAY и продолжать вызывать функцию write дважды. Это наименее желательное решение.

Упражнения 7.8 и 7.9 продолжают этот пример.

Поделитесь на страничке

Следующая глава >

Похожие главы из других книг

Параметр сокета SO_USELOOPBACK

Из книги UNIX: разработка сетевых приложений автора Стивенс Уильям Ричард

Параметр сокета SO_USELOOPBACK Этот параметр применяется только к маршрутизирующим сокетам (AF_ROUTE). По умолчанию он включен на этих сокетах (единственный из параметров SO_xxx, по умолчанию включенный). В этом случае сокет получает копию всего, что отправляется на


Параметр сокета IP_HRDINCL

Из книги автора

Параметр сокета IP_HRDINCL Если этот параметр задан для символьного сокета IP (см. главу 28), нам следует создать наш собственный заголовок IP для всех дейтаграмм, которые мы отправляем через символьный сокет. Обычно ядро создает заголовок IP для дейтаграмм, отправляемых через


Параметр сокета IP_OPTIONS

Из книги автора

Параметр сокета IP_OPTIONS Установка этого параметра позволяет нам задавать параметры IP в заголовке IPv4. Это требует точного знания формата параметров IP в заголовке IP. Мы рассмотрим этот параметр в контексте маршрутизации от отправителя IPv4 в разделе


Параметр сокета IP_RECVDSTADDR

Из книги автора

Параметр сокета IP_RECVDSTADDR Этот параметр сокета заставляет функцию recvmsg возвращать IP-адрес получателя в получаемой дейтаграмме UDP в качестве вспомогательных данных. Пример использования этого параметра мы приводим в разделе


Параметр сокета IP_RECVIF

Из книги автора

Параметр сокета IP_RECVIF Этот параметр сокета заставляет функцию recvmsg возвращать индекс интерфейса, на котором принимается дейтаграмма UDP, в качестве вспомогательных данных. Пример использования этого параметра мы приводим в разделе


Параметр сокета IP_TOS

Из книги автора

Параметр сокета IP_TOS Этот параметр позволяет нам устанавливать поле тип службы (тип сервиса) (TOS, type-of-service) (рис. А.1) в заголовке IP для сокета TCP или UDP. Если мы вызываем для этого сокета функцию getsockopt, возвращается текущее значение, которое будет помещено в поля DSCP и ECN


Параметр сокета IP_TTL

Из книги автора

Параметр сокета IP_TTL С помощью этого параметра мы можем устанавливать и получать заданное по умолчанию значение TTL (time-to-live field — поле времени жизни, рис. А.1), которое система будет использовать для данного сокета. (TTL для многоадресной передачи устанавливается при помощи


7.7. Параметр сокета ICMPv6

Из книги автора

7.7. Параметр сокета ICMPv6 Единственный параметр сокета, обрабатываемый ICMPv6, имеет аргумент level, равный


Параметр сокета ICMP6_FILTER

Из книги автора

Параметр сокета ICMP6_FILTER Этот параметр позволяет нам получать и устанавливать структуру icmp6_filter, которая определяет, какие из 256 возможных типов сообщений ICMPv6 передаются для обработки на символьный сокет. Мы обсудим этот параметр в разделе


Параметр сокета IPV6_CHECKSUM

Из книги автора

Параметр сокета IPV6_CHECKSUM Этот параметр сокета задает байтовое смещение поля контрольной суммы внутри данных пользователя. Если значение неотрицательное, ядро, во-первых, вычисляет и хранит контрольную сумму для всех исходящих пакетов и, во-вторых, проверяет полученную


Параметр сокета IPV6_DONTFRAG

Из книги автора

Параметр сокета IPV6_DONTFRAG Установка этого параметра запрещает автоматическое включение заголовка фрагментации для UDP и символьных сокетов. При этом исходящие пакеты, размер которых превышает MTU исходящего интерфейса, просто сбрасываются. Системный вызов ошибку не


Параметр сокета IPV6_NEXTHOP

Из книги автора

Параметр сокета IPV6_NEXTHOP Этот параметр задает адрес следующего транзитного узла для дейтаграммы в виде структуры адреса сокета. Подробнее о нем рассказывается в разделе


Параметр сокета IPV6_PATHMTU

Из книги автора

Параметр сокета IPV6_PATHMTU Этот параметр может быть только получен, но не установлен. При его считывании система возвращает текущее значение маршрутной MTU, определенное соответствующим методом (см. раздел


Параметр сокета IPV6_RECVDSTOPTS

Из книги автора

Параметр сокета IPV6_RECVDSTOPTS Установка этого параметра означает, что любые полученные IPv6-параметры получателя должны быть возвращены в качестве вспомогательных данных функцией recvmsg. По умолчанию параметр отключен. Мы опишем функции, используемые для создания и обработки


Параметр сокета TCP_MAXSEG

Из книги автора

Параметр сокета TCP_MAXSEG Этот параметр сокета позволяет нам получать или устанавливать максимальный размер сегмента (maximum segment size, MSS) для соединения TCP. Возвращаемое значение — это количество данных, которые наш TCP будет отправлять на другой конец соединения. Часто это


Параметр сокета SCTP_ADAPTION_LAYER

Из книги автора

Параметр сокета SCTP_ADAPTION_LAYER При инициализации ассоциации любой собеседник может указать на наличие уровня-адаптора. Это указание должно представлять из себя 32-разрядное беззнаковое целое, которое может использоваться двумя приложениями для координации локального