Выделение памяти
Выделение памяти
При обсуждении формата исполняемых файлов и образа программы в памяти мы отметили, что сегменты данных и стека могут изменять свои размеры. Если для стека операцию выделения памяти операционная система производит автоматически, то приложение имеет возможность управлять ростом сегмента данных, выделяя дополнительную память из хипа (heap — куча). Рассмотрим этот программный интерфейс.
Память, которая используется сегментами данных и стека, может быть выделена несколькими различными способами как во время создания процесса, так и динамически во время его выполнения. Существует четыре способа выделения памяти:
1. Переменная объявлена как глобальная, и ей присвоено начальное значение в исходном тексте программы, например:
char ptype = "Unknown file type";
Строка ptype размещается в сегменте инициализированных данных исполняемого файла, и для нее выделяется соответствующая память при создании процесса.
2. Значение глобальной переменной неизвестно на этапе компиляции, например:
char ptype[32];
В этом случае место в исполняемом файле для ptype не резервируется, но при создании процесса для данной переменной выделяется необходимое количество памяти, заполненной нулями, в сегменте BSS.
3. Переменные автоматического класса хранения, используемые в функциях программы, используют стек. Память для них выделяется при вызове функции и освобождается при возврате. Например:
func1() {
int a;
char *b;
static int с = 4;
...
}
В данном примере переменные а и b размещаются в сегменте стека. Переменная с размешается в сегменте инициализированных данных и загружается из исполняемого файла либо во время создания процесса, либо в процессе загрузки страниц по требованию. Более подробно страничный механизм описан в главе 3.
4. Выделение памяти явно запрашивается некоторыми системными вызовами или библиотечными функциями. Например, функция malloc(3C) запрашивает выделение дополнительной памяти, которая в дальнейшем используется для динамического размещения данных. Функция ctime(3C), предоставляющая системное время в удобном формате, также требует выделения памяти для размещения строки, содержащей значения текущего времени, указатель на которую возвращается программе.
Напомним, что дополнительная память выделяется из хипа (heap) — области виртуальной памяти, расположенной рядом с сегментом данных, размер которой меняется для удовлетворения запросов на размещение. Следующий за сегментом данных адрес называется разделительным или брейк-адресом (break address). Изменение размера сегмента данных по существу заключается в изменении брейк-адреса. Для изменения его значения UNIX предоставляет процессу два системных вызова — brk(2) и sbrk(2).
#include <unistd.h>
int brk(void *endds);
void *sbrk(int incr);
Системный вызов brk(2) позволяет установить значение брейк-адреса равным endds и, в зависимости от его значения, выделяет или освобождает память (рис. 2.11). Функция sbrk(2) изменяет значение брейк-адреса на величину incr. Если значение incr больше 0, происходит выделение памяти, в противном случае, память освобождается.[23]
Рис 2.11. Динамическое выделение памяти с помощью brk(2)
Существуют четыре стандартные библиотечные функции, предназначенные для динамического выделения/освобождения памяти.
#include <stdlib.h>
void *malloc(size_t size);
void *calloc(size_t nelem, size_t elsize);
void *realloc(void *ptr, size_t size);
void free(void *ptr);
Функция malloc(3C) выделяет указанное аргументом size число байтов.
Функция calloc(3C) выделяет память для указанного аргументом nelem числа объектов, размер которых elsize. Выделенная память инициализируется нулями.
Функция realloc(3C) изменяет размер предварительно выделенной области памяти (увеличивает или уменьшает, в зависимости от знака аргумента size). Увеличение размера может привести к перемещению всей области в другое место виртуальной памяти, где имеется необходимое свободное непрерывное виртуальное адресное пространство.
Функция free(3C) освобождает память, предварительно выделенную с помощью функций malloc(3C), calloc(3C) или realloc(3C), указатель на которую передается через аргумент ptr.
Указатель, возвращаемый функциями malloc(3C), calloc(3C) и realloc(3C), соответствующим образом выровнен, таким образом выделенная память пригодна для хранения объектов любых типов. Например, если наиболее жестким требованием по выравниванию в системе является размещение переменных типа double по адресам, кратным 8, то это требование будет распространено на все указатели, возвращаемыми этими функциями.
Упомянутые библиотечные функции обычно используют системные вызовы sbrk(2) или brk(2). Хотя эти системные вызовы позволяют как выделять, так и освобождать память, в случае библиотечных функций память реально не освобождается, даже при вызове free(3C). Правда, с помощью функций malloc(3C), calloc(3C) или realloc(3C) можно снова выделить и использовать эту память и снова освободить ее, но она не передается обратно ядру, а остается в пуле malloc(3C).
Для иллюстрации этого положения приведем небольшую программу, выделяющую и освобождающую память с помощью функций malloc(3C) и free(3C), соответственно. Контроль действительного значения брейк-адреса осуществляется с помощью системного вызова sbrk(2):
#include <unistd.h>
#include <stdlib.h>
main() {
char *obrk;
char *nbrk;
char *naddr;
/* Определим текущий брейк-адрес */
obrk = sbrk(0);
printf("Текущий брейк-адрес= 0x%x ", obrk);
/* Выделим 64 байта из хипа */
naddr = malloc(64);
/* Определим новый брейк-адрес */
nbrk = sbrk(0);
printf("Новый адрес области malloc= 0x%x,"
" брейк-адрес= 0х%x (увеличение на %d байтов) ",
naddr, nbrk, nbrk — obrk);
/* "Освободим" выделенную память и проверим, что произошло
на самом деле */
free(naddr);
printf("free(0x%x) ", naddr);
obrk = sbrk(0);
printf("Новый брейк-адрес= 0x%x (увеличение на %d байтов) ",
obrk, obrk — nbrk);
}
Откомпилируем и запустим программу:
$ a.out
Текущий брейк-адрес= 0x20ac0
malloc(64)
Новый адрес области malloc = 0x20ac8, брейк-адрес = 0x22ac0
(увеличение на 8192 байтов)
free(0x20ac8)
Новый брейк-адрес = 0x22ac0 (увеличение на 0 байтов)
$
Как видно из вывода программы, несмотря на освобождение памяти функцией free(3C), значение брейк-адреса не изменилось. Также можно заметить, что функция malloc(3C) выделяет больше памяти, чем требуется. Дополнительная память выделяется для необходимого выравнивания и для хранения внутренних данных malloc(3C), таких как размер области, указатель на следующую область и т.п.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
3.2. Выделение памяти
3.2. Выделение памяти Четыре библиотечные функции образуют основу управления динамической памятью С Мы опишем сначала их, затем последуют описания двух системных вызовов, поверх которых построены эти библиотечные функции. Библиотечные функции С, в свою очередь, обычно
14.1. Выделение выровненной памяти: posix_memalign() и memalign()
14.1. Выделение выровненной памяти: posix_memalign() и memalign() Для большинства задач отлично подходят стандартные процедуры выделения памяти — malloc(), realloc() и т.д. Но иногда может понадобиться память, которая выровнена тем или иным способом. Другими словами, адрес первого выделенного
Статическое выделение памяти в стеке
Статическое выделение памяти в стеке В пространстве пользователя многие операции выделения памяти, в частности некоторые рассмотренные ранее примеры, могут быть выполнены с использованием стека, потому что априори известен размер выделяемой области памяти. В
Выделение памяти, связанной с определенным процессором
Выделение памяти, связанной с определенным процессором В современных операционных системах широко используются данные, связанные с определенными процессорами (per-CPU data). Это данные, которые являются уникальными для каждого процессора. Данные, связанные с процессорами,
Выделение дескриптора памяти
Выделение дескриптора памяти Указатель на дескриптор памяти, выделенный для какой-либо задачи, хранится в поле mm дескриптора процесса этой задачи. Следовательно, выражение current->mm позволяет получить дескриптор памяти текущего процесса. Функция copy_mm() используется для
6.5.2 Выделение области
6.5.2 Выделение области Ядро выделяет новую область (по алгоритму allocreg, Рисунок 6.18) во время выполнения системных функций fork, exec и shmget (получить разделяемую память). Ядро поддерживает таблицу областей, записям которой соответствуют точки входа либо в списке свободных
18.6.5 Выделение оперативной памяти для VMware
18.6.5 Выделение оперативной памяти для VMware Система VMware позволяет пользователям задавать как объем оперативной памяти, выделяемой каждому виртуальному компьютеру, так и общее количество ОП, зарезервированное для использования виртуальными машинами. Правильная настройка
Выделение памяти
Выделение памяти Сначала следует определить место для размещения строки при вводе. Как было отмечено раньше, это значит, выделить память, достаточную для размещения любых строк, которые мы предполагаем читать. Не следует надеяться, что компьютер подсчитает длину
5.1.3. Выделение сегментов памяти
5.1.3. Выделение сегментов памяти Процесс выделяет сегмент памяти с помощью функции shmget(). Первым аргументом функции является целочисленный ключ, идентифицирующий создаваемый сегмент. Если несвязанные процессы хотят получить доступ к одному и тому же сегменту, они должны
2.2. Динамическое выделение памяти и указатели
2.2. Динамическое выделение памяти и указатели Прежде чем углубиться в объектно-ориентированную разработку, нам придется сделать небольшое отступление о работе с памятью в программе на С++. Мы не сможем написать сколько-нибудь сложную программу, не умея выделять память
Выделение
Выделение Чтобы выделить объект, необходимо включить режим выделения (см. предыдущий подраздел). Для выделения одиночного объекта следует щелкнуть по нему указателем мыши. Вокруг этого объекта появится рамка с маркерами. Рамки для прямоугольника, эллипса и текста
Инструмент Выделение
Инструмент Выделение Для выделения, перемещения в пространстве доски, изменения некоторых свойств объектов служит инструмент Выделение. Для выбора какого-либо объекта на странице необходимо сначала активизировать инструмент Выделение, в этом случае курсор приобретет
Ошибка 0x000000C2: неправильное выделение памяти
Ошибка 0x000000C2: неправильное выделение памяти Некорректное выделение памяти. Причина – некорректно работающий
Выделение
Выделение В главе 1, где говорится о Microsoft Windows, мы уже знакомились с понятием выделения. Однако это понятие настолько фундаментально, что мы возвращаемся к нему снова и будем возвращаться еще не раз. В этой главе мы обсудим два вида выделения: выделение текста и выделение