Гамильтонова механика

We use cookies. Read the Privacy and Cookie Policy

Гамильтонова механика

Своими успехами ньютоновская механика обязана не только своей способности исключительно точно описывать физический мир, но и обилию порожденных ею математических теорий. Замечательно, что все ПРЕВОСХОДНЫЕ теории природы оказались весьма щедрыми источниками математических идей. В этом кроется глубокая и прекрасная тайна: все наиболее точные теории в то же время необычайно плодотворны и с точки зрения математики. Не подлежит сомнению, что это свидетельствует о каких-то глубоких связях между реальным окружающим нас миром и платоновским миром математики. (Далее, (в главе 10, «Взгляд на физическую реальность») я постараюсь еще раз вернуться к этому вопросу.) Возможно, ньютоновская механика в этом отношении не имеет себе равных, так как ее рождение привело к возникновению дифференциального и интегрального исчисления. Кроме того, специфическая ньютонианская схема дала рождение массе замечательных математических идей, составляющих классическую механику. Имена многих великих математиков XVIII и XIX веков связаны с развитием этой науки: Эйлер, Лагранж, Лаплас, Лиувилль, Пуассон, Якоби, Остроградский, Гамильтон. То, что принято называть «гамильтоновой теорией»[112] включает в себя многое из проделанной ими работы. Сейчас мы вкратце коснемся Общих положений этой теории. Разносторонний и самобытный ирландский математик Уильям Роуан Гамильтон (1805–1865), автор гамильтоновых циклов (обсуждаемых в гл.4, подгл. «Теория сложности»), придал этой теории такую форму, которая особо подчеркивала аналогию с распространением волн. Это указание на существование взаимосвязи между волной и частицей (равно как и форма самих уравнений Гамильтона) сыграло важную роль в последующем развитии квантовой механики. К этой стороне дела я еще вернусь в следующей главе.

В рамках гамильтоновой теории впервые появились «переменные» для описания физической системы. До Гамильтона положения частиц считались первичными, а скорости считались просто быстротой изменения положения частиц во времени. Напомним, что для задания начального состояния ньютоновской системы нам необходимы положения и скорости всех частиц — только тогда мы можем определить последующее поведение системы. В рамках гамильтоновой формулировки необходимо выбирать импульсы, а не скорости частиц. (В гл.5, подгл. «Динамика Галилея и Ньютона» мы отметили, что импульс частицы есть не что иное, как произведение ее скорости на массу.) Само по себе это нововведение может показаться несущественным, но важно здесь другое: положение и импульс каждой частицы в гамильтоновой формулировке надлежит рассматривать как независимые, более или менее равноправные величины. Тем самым, используя гамильтонову формулировку, мы «делаем вид», что импульсы различных частиц не имеют никакого отношения к быстроте изменения переменных, описывающих их относительное положение, а представляют собой отдельный набор переменных — и, как следствие, мы можем считать импульсы совершенно независимыми от изменения положений движущихся частиц. В гамильтоновой формулировке мы располагаем двумя системами уравнений: одна из них говорит нам о том, как изменяются во времени импульсы различных частиц, другая — о том, как изменяются во времени положения частиц. И в том, и в другом случае быстрота изменений определяется различными положениями и импульсами в рассматриваемый момент времени.

Грубо говоря, первая система гамильтоновых уравнений выражает второй, самый важный закон движения Ньютона (быстрота изменения импульса = силе), тогда как вторая система уравнений Гамильтона говорит нам о том, чему равны импульсы, выраженные в терминах скоростей (быстрота изменения положения = импульс/массу). Напомним, что в формулировках законов движения Галилея — Ньютона использовались ускорения (или быстрота изменения быстроты изменения положения, т. е. уравнения «второго порядка»), тогда как в гамильтоновой формулировке нам достаточно говорить только о быстроте изменения величин (уравнения «первого порядка»). Все гамильтоновы уравнения выводятся всего лишь из одной важной величины: функции Гамильтона Н, представляющую собой полную энергию системы, выраженную в переменных, описывающих положения и импульсы.

Гамильтонова формулировка дает весьма изящное и симметричное описание механики. Выпишем здесь гамильтоновы уравнения просто для того, чтобы понять, как они выглядят, хотя многие читатели, возможно, и не знакомы с принятыми в математическом анализе обозначениями, необходимыми для полного понимания — впрочем, оно сейчас и не требуется. Все, что нам сейчас действительно нужно знать о дифференциальном исчислении, ограничивается пониманием смысла «точки» в левых частях уравнений Гамильтона — она означает быстроту изменения по времени (в первом случае — импульса, во втором случае — положения):

Индекс i здесь использован просто для того, чтобы отличать все различные координаты импульсов (р1, p2p3p4…) и положений (х1, х2, x3, x4…). Для n частиц, не ограниченных наложенными на них связями, мы получаем 3n координат импульсов и 3n координат положений (по одной координате для каждого из трех независимых направлений в пространстве). Символ ? относится к операции «частного дифференцирования» (взятию производной по одной переменной при сохранении постоянных значений всех остальных переменных), а Н, как сказано выше, означает функцию Гамильтона. (Если Вы ничего не знаете о «дифференцировании» — не стоит беспокоиться. Просто рассматривайте правые части уравнений Гамильтона как некие вполне определенные математические выражения, записанные через xi и pi.)

Координаты x1, x2… и, р1, p2,…. могут на самом деле использоваться для обозначения более общих вещей, а не только обычных декартовых координат для частиц (т. е. когда xi — обычные расстояния, измеряемые по трем различным направлениям, расположенным под прямыми углами друг к другу). Например, некоторые из xi в гамильтоновом случае можно считать углами — тогда соответствующие рi превращаются в угловые моменты (см. гл.6, подгл. «Уравнение Шредингера; уравнение Дирака») вместо импульсов — или вообще какими-нибудь совершенно абстрактными величинами. Замечательно, что при этом гамильтоновы уравнения по-прежнему сохраняют в точности ту же форму. Действительно, при подходящем выборе функции Гамильтона Н гамильтоновы уравнения остаются в силе для любой системы классических уравнений, а не только для уравнений Ньютона. В частности, они выполняются для теории Максвелла(—Лоренца), к рассмотрению которой мы вскоре приступим. Гамильтоновы уравнения можно записать и для специальной теории относительности. Даже общую теорию относительности (при соблюдении должной осторожности) можно представить в гамильтоновой форме. Кроме того, как мы убедимся в дальнейшем при знакомстве с уравнением Шредингера (см. гл.6, подгл. «Уравнение Шредингера; уравнение Дирака»), гамильтонова формулировка служит отправным пунктом для вывода уравнений квантовой механики. Такое единство формы в структуре динамических уравнений, сохранившееся несмотря на все революционные новшества, введенные в физические теории за минувшие столетия, поистине удивительна!

Данный текст является ознакомительным фрагментом.