Глава 2 Структура хранения данных на внешних носителях информации
Глава 2
Структура хранения данных на внешних носителях информации
2.1. Единица хранения данных
При хранении данных решаются две проблемы: как сохранить данные в наиболее компактном виде и как обеспечить к ним удобный и быстрый доступ (если доступ не обеспечен, то это не хранение). Для обеспечения доступа необходимо, чтобы данные имели упорядоченную структуру. При этом образуются адресные данные. Без них нельзя получить доступ к нужным элементам данных, входящих в структуру.
Поскольку адресные данные тоже имеют размер и тоже подлежат хранению, хранить данные в виде мелких единиц, таких, как байты, неудобно. Их неудобно хранить и в более крупных единицах (килобайтах, мегабайтах и т. п.), поскольку частичное заполнение одной единицы хранения приводит к неэффективности хранения.
В качестве единицы хранения данных принят объект переменной длины, называемый файлом.
Файл – это последовательность произвольного числа байтов, обладающая уникальным собственным именем.
Обычно в отдельном файле хранят данные, относящиеся к одному типу. В этом случае тип данных определяет тип файла.
Поскольку в определении файла нет ограничений на размер, можно представить себе файл, имеющий 0 байтов (пустой файл), и файл, имеющий любое число байтов.
В определении файла особое внимание уделяется имени. Оно фактически несет в себе адресные данные, без которых данные, хранящиеся в файле, не станут информацией из-за отсутствия метода доступа к ним. Кроме функций, связанных с адресацией, имя файла может хранить и сведения о типе данных, заключенных в нем. Для автоматических средств работы с данными это важно, поскольку по имени файла они могут автоматически определить адекватный метод извлечения информации из файла.
Имя файла состоит из двух частей: собственно имени и расширения файла. Например:
Собственно имя файла может состоять из букв русского и английского алфавитов, цифр и специальных символов. При этом его длина не должна превышать 256 символов.
В зависимости от расширения все файлы делятся на две большие группы: исполняемые и неисполняемые.
Исполняемые файлы – это такие файлы, которые могут выполняться самостоятельно, т. е. не требуют каких-либо специальных программ для их запуска. Имеют следующие расширения:
– exe – готовый к исполнению файл (tetris.exe; winword.exe);
– com – файл операционной системы (command.com);
– sys – файл операционной системы (Io.sys);
– bat – командный файл операционной системы MS-DOS (autoexec.bat).
Неисполняемые файлы для запуска требуют установки специальных программ. Так, например, для того чтобы просмотреть текстовый документ, требуется наличие какого-либо текстового редактора. По расширению неисполняемого файла можно судить о типе данных, хранящихся в данном файле. Вот несколько примеров:
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Наик Дайлип Системы хранения данных в Windows
Наик Дайлип Системы хранения данных в Windows Серверные технологии хранения данных в среде Windows® 2000 Windows® Server
Глава 1 Знакомство с Windows NT и драйверами устройств хранения данных
Глава 1 Знакомство с Windows NT и драйверами устройств хранения данных В этой главе рассматриваются драйверы устройств Windows NT, драйверы фильтрации и стек драйверов устройств хранения данных для семейства Windows Server. Приведенных сведений достаточно для того, чтобы познакомить
Глава 4 Сети хранения данных на базе интерфейса Fibre Channel
Глава 4 Сети хранения данных на базе интерфейса Fibre Channel Эту главу можно рассматривать как введение в сети хранения данных (storage area network – SAN) в общем и в сети хранения данных на базе интерфейса Fibre1 Channel в частности. Хотя сети хранения данных могут создаваться и на основе
Глава 10 Возможности подсистемы хранения данных в различных версиях Windows NT
Глава 10 Возможности подсистемы хранения данных в различных версиях Windows NT В предыдущих главах рассматривалась архитектура Windows в рамках определенных возможностей подсистемы хранения данных. Эта глава предназначена для профессионалов, использующих подсистемы хранения
Оптимальная структура хранения записей
Оптимальная структура хранения записей InterBase использует эффективный способ хранения записей на страницах базы данных, используя алгоритм RLE (run length encoding - кодирование последовательностей) при размещении данных, за счет которого базы данных InterBase являются компактными.
16.8. XDR: представление внешних данных
16.8. XDR: представление внешних данных В предыдущей главе мы использовали двери для вызова процедуры одного процесса из другого процесса. При этом оба процесса выполнялись на одном узле, поэтому необходимости в преобразовании данных не возникало. Однако RPC используется для
Глава 13. Тонкости хранения данных: массивы и коллекции.
Глава 13. Тонкости хранения данных: массивы и коллекции. В этой главе ...~ Использование массивов для управления наборами элементов одного и того же типа~ Многомерные массивы~ Объект Collection как альтернатива массивам~ Создание своих собственных типов данных для работы с
2.1. Краткий обзор архитектуры хранения данных в MySQL
2.1. Краткий обзор архитектуры хранения данных в MySQL Архитектура хранения данных в MySQL позволяет профессионалу базы данных выбирать специализированный тип памяти для специфической потребности прикладной программы. Сервер MySQL изолирует прикладного программиста и DBA от
2.1. Единица хранения данных
2.1. Единица хранения данных При хранении данных решаются две проблемы: как сохранить данные в наиболее компактном виде и как обеспечить к ним удобный и быстрый доступ (если доступ не обеспечен, то это не хранение). Для обеспечения доступа необходимо, чтобы данные имели
2.3. Имена внешних носителей информации
2.3. Имена внешних носителей информации Диски, на которых хранится информация в компьютере, имеют свои имена – каждый диск назван буквой латинского алфавита, а затем ставится двоеточие. Так, для дискет всегда отводятся буквы A: и B:. Логические диски винчестера именуются,
Глава 0 Принципы хранения информации
Глава 0 Принципы хранения информации • Носители и накопители• Случаи потери информации и принципы восстановленияВ этой главе рассматриваются общие моменты. По компьютерной традиции нумеровать все с нуля, нумерация глав книги также начинается с нуля. Ко всему
Принципы хранения данных на лазерных дисках
Принципы хранения данных на лазерных дисках На лазерных, или оптических, дисках информация записывается благодаря разной отражающей способности отдельных участков такого диска. Все оптические диски схожи тем, что носитель (диск) всегда отделен от привода, который
Глава 4 СТРУКТУРА ДАННЫХ ПРОГРАММ
Глава 4 СТРУКТУРА ДАННЫХ ПРОГРАММ 4.1. ПОНЯТИЕ СТРУКТУРЫ ДАННЫХ ПРОГРАММ Под структурой данных программ в общем случае понимают множество элементов данных, множество связей между ними, а также характер их организованности.Под организованностью данных понимается