8.2 Стандарт InfiniBand
8.2 Стандарт InfiniBand
Новый стандарт (и архитектура) InfiniBand предназначен для соединения коммутируемых связных архитектур между узлом и хранилищем или сетевыми периферийными устройствами. Разработкой спецификации InfiniBand занимается ассоциация IBTA (InfiniBand Trade Association). Эта ассоциация была сформирована после слияния двух конкурирующих спецификаций: Future I/O, продвигавшейся усилиями компании Intel, и Next Generation I/O, разрабатываемой компаниями IBM, HP и Compaq.
Архитектура InfiniBand предлагает несколько модификаций, в частности замену шины ввода-вывода (например, PCI) сетью коммутируемой связной архитектуры. Последовательная коммутируемая связная архитектура обладает определенными преимуществами по сравнению с обычной шиной ввода- вывода. Наиболее заметное преимущество состоит в поддержке большего количества устройств на значительно большем расстоянии с использованием на порядок меньшего количества электрических проводников. Кроме того, связная архитектура поддерживает несколько одновременных сеансов передачи данных и обеспечивает устойчивость к ошибкам. Прежде чем подробно обсуждать архитектуру InfiniBand, рассмотрим недостатки шины PCI.
Хотя шина PCI обладает определенными позитивными свойствами, например в свое время она заменила сразу несколько конкурирующих стандартов (ISA, EISA, MCA), в свете быстрого развития центральных процессоров, памяти и технологий периферийных устройств ее ограничения становятся все более явными. Приведем некоторые из них.
Хотя шина PCI обладала достаточным быстродействием в момент своего появления, ее пропускная способность более не соответствует современным требованиям: шина FSB центрального процессора имеет пропускную способность 1066 Мбит/с, а для устройств Gigabit Ethernet и высокоуровневых устройств хранения (SCSI 3) шина PCI станет «бутылочным горлышком», ограничивающим эффективность работы.
Шина PCI имеет определенные проблемы в управлении вообще и в обнаружении ошибок в частности. Одна некорректно работающая плата PCI может привести к неисправности всей системы, в то время как обнаружить поврежденную плату крайне сложно.
Существуют физические ограничения на длину шины и скорость передачи данных, кроме того ограничено количество шин. При использовании наибольшей скорости передачи данных к шине можно подключить только одно периферийное устройство.
Обратите внимание: хотя технология InfiniBand изначально позиционировалась как замена шины PCI, с появлением технологии 3GIO роль InfiniBand в качестве PCI нового поколения заметно снизилась.
8.2.1 Преимущества технологии InfiniBand
Технология InfiniBand предоставляет множество преимуществ.
Сокращение сложности кабельных подключений, так как InfiniBand позволяет заменить три кабеля – Ethernet, кабели к подсистеме хранения и кабели межпроцессного взаимодействия – одним соединением. В результате намного упрощается аппаратная структура монтажной платы, разводка соединителей на платах и общая структура системы. Более того, монтажные платы подключаются к граничным разъемам и из стойки доступна только пара высокоскоростных соединений.
Встроенное обнаружение ошибок, упрощающее поиск неисправного компонента.
Сокращение потребления пропускной способности памяти, так как сокращается количество операций копирования в память и из нее.
Сокращение контекстных переключений, в том числе переключения между пользовательским режимом и режимом ядра.
Уменьшение накладных расходов, например при вычислении контрольных сумм TCP/IP.
Обеспечение отказоустойчивости за счет использования альтернативных маршрутизаторов в среде связной архитектуры и таких избыточных компонентов; как маршрутизаторы и коммутаторы. Избыточные маршруты позволяют выполнять отправку данных по нескольким маршрутам и балансировать общую нагрузку. Более того, компоненты InfiniBand поддерживают «горячую» замену.
Технология InfiniBand обеспечивает эффективную загрузку монтажной платы из внешнего устройства, что позволяет еще более упростить аппаратную структуру платы.
8.2.2 Архитектура InfiniBand
Архитектурой InfiniBand определена топология логического подключения «точка-точка», которое формируется поверх связной архитектуры. Непосредственно коммутируемая связная архитектура содержит следующие компоненты:
? адаптеры канала узла;
Рис. 8.9. Шина ввода-вывода InfiniBand
адаптеры канала целевого устройства;
коммутаторы InfiniBand;
физический носитель.
На рис. 8.9 демонстрируется структура шины ввода-вывода InfiniBand и взаимоотношение различных компонентов, которые более подробно рассматриваются далее.
Адаптер канала узла (host channel adapter – НСА) представляет собой устройство, которое работает в качестве точки соединения центрального процессора узла и связной архитектуры InfiniBand. Адаптеры каналов узла тесно связаны с серверами и размещаются рядом с ними. Адаптер НСА уменьшает количество прерываний, сдерживает «вмешательство» операционной системы и может обмениваться данными непосредственно с памятью. Каждый адаптер имеет уникальный идентификатор, созданный на основе адреса протокола IPv6.
Адаптер канала целевого устройства (target channel adapter – ТС А) является аналогом адаптера НСА, предназначенного для периферийных устройств, а не ЦПУ узлов. Адаптеры ТС А обычно взаимодействуют с периферийными устройствами и также размещены недалеко от них.
Коммутатор InfiniBand предоставляет возможность подключения нескольких адаптеров ТСА к одному адаптеру НСА. Кроме того, коммутаторы поддерживают маршрутизацию нескольких логических элементов связной архитектуры (они называются подсетями). В то время как коммутаторы InfiniBand поддерживают подключения внутри подсети, маршрутизаторы InfiniBand реализуют подключение между подсетями. Маршрутизаторы обычно настраиваются так, чтобы дополнять возможности коммутаторов новыми функциями.
Технология InfiniBand поддерживает использование обычных медных или оптических кабелей, при этом линии связи могут достигать 17 метров для медных носителей и 100 метров для оптических кабелей. Подключение InfiniBand может включать в себя разное количество линий связи, каждая из которых имеет быстродействие 2,5 Гбит/с. Поддерживаются комбинации от IX (1 кабель) до 4Х (4 кабеля) для быстродействия 10 Гбит/с или 12Х (12 кабелей) для быстродействия 30 Гбит/с.
Архитектура InfiniBand включает в себя не только физические, но и логические компоненты, описанные далее.
8.2.2.1 Линии связи InfiniBand и сетевые уровни
На уровне канала передачи данных (уровень 2 модели OSI) каждая линия InfiniBand делится максимум на 16 потоков и минимум на 2 потока. Один из потоков всегда выделяется на управление связной архитектурой. Потоки получают приоритеты QoS, а поток управления поЛучает наивысший приоритет (виртуальный поток 15; потоки 0–14 используются для передачи данных) и соответствующий уровень QoS.
Следует отметить, что, в отличие от потока, канал передачи данных представляет собой физический компонент. Поток позволяет двум узловым системам связываться друг с другом. Установившие сеанс связи системы могут поддерживать различное количество виртуальных потоков, для чего в спецификации InfiniBand описан соответствующий алгоритм. Установившие связь конечные точки называются парой очереди (queue pair). Пары очереди имеют связанные с ними буферы приема и отправки. Каждый виртуальный поток (virtual lane – VL) предоставляет собственное управление потоком на кредитной основе. Пакеты управления обеспечивают перечисление устройств, управления подсетями и устойчивость к ошибкам.
Технология InfiniBand поддерживает одновременную передачу данных без коллизий[20]. Для обеспечения надежной передачи данных технология InfiniBand использует сквозное управление потоком и не одну, а две проверки целостности по алгоритму CRC. Управление потоком выполняется с помощью выделения буферов на принимающем узле и передачи количества буферов отправляющему узлу. Этим значением указывается количество буферов данных, которые можно отправить без подтверждения приема. Два значения CRC подсчитываются и передаются вместе с данными. Получающая сторона также подсчитывает эти значения. Значение CRC размером 32 бит создается для связи «точка-точка». В то же время данные могут передаваться через промежуточные узлы. Между промежуточными узлами или между промежуточным и конечным узлами используются значения размером 16 бит.
В архитектуре InfiniBand базовой единицей передачи является сообщение (message). Сообщение может быть отправлено или принято с помощью операции RDMA, операции отправки или приема или с помощью операции групповой отправки. Операция удаленного прямого доступа к памяти (Remote Direct Memory Access – RDMA) обеспечивает непосредственный обмен сообщениями между памятью узлов, минуя прерывания операционной системы и не требуя использования служб. Технологией InfiniBand определено шесть режимов передачи данных.
Надежное соединение, при котором аппаратное обеспечение отвечает за генерацию и проверку номеров последовательности пакетов, реализуя тем самым надежность соединения; кроме того, аппаратное обеспечение отвечает за обнаружение дублированных и потерянных пакетов, а также восстановление после ошибок.
Ненадежное соединение.
Надежная дейтаграмма.
Ненадежная дейтаграмма.
Соединение групповой отправки (реализация необязательна).
Пакетная передача (реализация необязательна).
Сообщение InfiniBand может состоять из одного или нескольких пактов. Пакеты могут иметь размер до 4096 байт. На виртуальных потоках (VL) возможно чередование пакетов. Маршрутизация проводится на уровне пакетов, причем пакеты, маршрутизируемые между подсетями, содержат глобальный заголовок, благодаря которому и реализуется маршрутизация.
Кроме того, в архитектуре InfiniBand определен сетевой уровень, обеспечивающий маршрутизацию между различными подсетями. Подсети позволяют локализовать передачу данных в пределах определенной подсети; например широковещательные пакеты и пакеты групповой отправки не выходят за рамки подсети. Подсети предоставляют функции, аналогичные возможностям виртуальной LAN (VLAN), и могут использоваться для обеспечения безопасности. Для каждого устройства в подсети используется 16-разрядный идентификатор, уникальный в пределах подсети. Каждый маршрутизируемый пакет содержит адреса IPv6 исходного узла и узла назначения.
8.2.3 Компания Microsoft и технология InfiniBand
Компания Microsoft в свое время указала, что в неопределенном будущем семейство операционных систем Microsoft Windows будет поддерживать технологию InfiniBand. В третьем квартале 2002 года Microsoft и другие лидеры индустрии информационных технологий сообщили о пересмотре своих планов подцержки технологии InfiniBand; в частности, Microsoft сообщила о перераспределении ресурсов, направленных ранее на поддержку технологии InfiniBand, на другие области, включая IP Storage поверх Gigabit Ethernet. Таким образом, данный раздел может показаться неполным, поскольку не существует конкретной реализации InfiniBand от Microsoft, которую можно было бы описать в полной мере.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
3.3. Германский стандарт BSI
3.3. Германский стандарт BSI В отличие от ISO 17799 германское «Руководство по защите информационных технологий для базового уровня защищенности» 1998 года посвящено детальному рассмотрению частных вопросов создания политик безопасности компании и управления безопасностью в
3.4. Стандарт CobiT
3.4. Стандарт CobiT К настоящему времени аудиторскими компаниями образованы различные государственные и негосударственные ассоциации, объединяющие профессионалов в области аудита информационных систем, которые занимаются созданием и сопровождением, как правило,
15.1.3 RPC как стандарт Интернета
15.1.3 RPC как стандарт Интернета Компания Sun Microsystems опубликовала RFC с описанием RPC в 1988 г., a NFS — в 1989 г. Однако Sun контролировала эти протоколы вплоть до 1995 г., пока не появились новые версии. С этого момента ответственность за RFC архитектуры ONC перешла к комитету IETF, а сама
Глава 8 Технологии IP Storage и InfiniBand
Глава 8 Технологии IP Storage и InfiniBand В этой главе рассматриваются две развивающиеся технологии: IP Storage и InfiniBand.Набор технологий IP Storage позволяет предоставлять доступ к корпоративным хранилищам данных по протоколу IP. Под термином IP Storage подразумевается набор технологий iSCSI, FCIP
Стандарт IEEE 802.11a
Стандарт IEEE 802.11a IEEE 802.11a – стандарт беспроводной сети, который рассчитан на работу в двух радиодиапазонах – 2,4 и 5 ГГц. Максимальная скорость передачи данных – 54 Мбит/с. Однако кроме этой скорости спецификациями предусмотрены другие:• обязательные – 6, 12 и 24
Стандарт IEEE 802.11b
Стандарт IEEE 802.11b Работа над стандартом IEEE 802.11b (другое название – IEEE 802.11 High rate) закончилась в 1999 году. Тогда же было введено понятие Wi-Fi (Wireless Fidelity).Этот стандарт работает на частоте 2,4 ГГц, используя при этом не более трех неперекрывающихся каналов. Радиус действия сети –
Стандарт IEEE 802.11d
Стандарт IEEE 802.11d Стандартом IEEE 802.11d определяются параметры физических каналов и сетевого оборудования. Им описываются правила, касающиеся разрешенной мощности излучения передатчиков в допустимых законами диапазонах частот.Этот стандарт крайне важен, поскольку для
Стандарт IEEE 802.11e
Стандарт IEEE 802.11e Через сеть могут передаваться данные различных форматов и разной степени важности, поэтому необходимо иметь механизм, распределяющий приоритеты передачи. За это отвечает стандарт IEEE 802.11e, который был разработан с целью передачи потокового видео или
Стандарт IEEE 802.11f
Стандарт IEEE 802.11f Стандарт IEEE 802.11f разработан с целью обеспечения аутентификации сетевого оборудования (рабочей станции), если компьютер пользователя перемещается от одной точки доступа к другой, то есть между сегментами сети. Вступает в действие протокол обмена
Стандарт IEEE 802.11g
Стандарт IEEE 802.11g До недавнего времени наиболее распространенным и быстрым стандартом можно было считать стандарт IEEE 802.11g, который взял лучшее от стандартов IEEE 802.11b и IEEE 802.11b, а также содержит много нового. Целью его создания было достичь скорости передачи данных 54
Стандарт IEEE 802.11h
Стандарт IEEE 802.11h Стандарт IEEE 802.11h разработан с целью эффективного управления мощностью излучения передатчика, выбором несущей частоты передачи и генерации нужных отчетов. Он вносит новые алгоритмы в МАС-уровень, а также в физический уровень стандарта IEEE 802.11a. В первую
Стандарт IEEE 802.11i
Стандарт IEEE 802.11i Стандарт IEEE 802.11i создан для повышения безопасности при работе беспроводной сети. С этой целью разработаны алгоритмы шифрования и аутентификации, функции защиты при обмене информацией, генерирования ключей и др., в частности:• AES (Advanced Encryption Standard) –
Стандарт IEEE 802.11j
Стандарт IEEE 802.11j Стандарт IEEE 802.11j создан для использования беспроводных сетей в Японии, то есть для работы в дополнительном диапазоне радиочастот.[19] Спецификация расширяет стандарт 802.11а добавочным каналом 4,9 ГГц. Примечание На данный момент частота 4,9 ГГц
Стандарт IEEE 802.11n
Стандарт IEEE 802.11n Стандарт IEEE 802.11n – самый перспективный из всех беспроводных стандартов передачи данных, касающихся беспроводных сетей. Он не прошел завершающую аттестацию, однако на рынке уже появляются устройства этого стандарта.Согласно последнему из вариантов
Стандарт IEEE 802.11r
Стандарт IEEE 802.11r Ни один из беспроводных стандартов не описывает правила роуминга, то есть перехода клиента от одной зоны к другой. Это призван сделать стандарт IEEE
Стандарт, еще стандарт
Стандарт, еще стандарт Автор: Илья Щуров VoyagerЗанимаясь тематикой свободного ПО уже несколько лет, я успел привыкнуть к некоторым простым и очевидным вещам. Например, к тому, что открытые стандарты для интерфейсов и форматов - это не только хорошо, но и очень важно.